Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2015_15_2_a1, author = {S. V. Galaev and Yu. V. Shevtsova}, title = {Almost contact metric structures defined by a symplectic structure over a~distribution}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {136--141}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a1/} }
TY - JOUR AU - S. V. Galaev AU - Yu. V. Shevtsova TI - Almost contact metric structures defined by a symplectic structure over a~distribution JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2015 SP - 136 EP - 141 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a1/ LA - ru ID - ISU_2015_15_2_a1 ER -
%0 Journal Article %A S. V. Galaev %A Yu. V. Shevtsova %T Almost contact metric structures defined by a symplectic structure over a~distribution %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2015 %P 136-141 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a1/ %G ru %F ISU_2015_15_2_a1
S. V. Galaev; Yu. V. Shevtsova. Almost contact metric structures defined by a symplectic structure over a~distribution. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 2, pp. 136-141. http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a1/
[1] Sasaki S., “On the differential geometry of tangent bundles of Riemannian manifolds”, Tohoku Math. J., 1958, no. 10, 338–354 | DOI | MR | Zbl
[2] Panzhenskii V. I., Sukhova O. V., “Almost Hermitian structures on the tangent bundle of almost symplectic manifold”, Russian Math., 51:11 (2007), 73–75 | DOI | MR | Zbl
[3] Galaev S. V., “The intrinsic geometry of almost contact metric manifolds”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 12:1 (2012), 16–22 (in Russian) | MR | Zbl
[4] Bukusheva A. V., Galaev S. V., “Almost contact metric structures defined by connection over distribution with admissible Finslerian metric”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 12:3 (2012), 17–22 (in Russian) | Zbl
[5] Galaev S. V., Gokhman A. V., “Generalized Hamiltonian systems on manifolds with an almost contact metric structure”, collection of proceedings, Mathematics. Mechanics, 14, Saratov Univ. Press, Saratov, 2012, 23–26 (in Russian)
[6] Galaev S. V., Gokhman A. V., “Almost symplectic connection on a nonholonomic manifold”, collection of proceedings, Mathematics Mechanics, 3, Saratov Univ. Press, Saratov, 2001, 28–31 (in Russian)
[7] Galaev S. V., “Almost contact Kähler manifolds of constant holomorphic sectional curvature”, Russian Math., 58:8 (2014), 35–42 | DOI | MR | Zbl
[8] Vagner V. V., “The geometry of an $(n-1)$-dimensional nonholonomic manifold in an $n$-dimensional space”, Trudy Sem. Vektor. Tenzor. Analiza, 5, Moscow Univ. Press, M., 1941, 173–255 (in Russian) | MR