Some Liouville-type theorems for the stationary Ginsburg--Landau equation on quasi-model Riemannian manifolds
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 2, pp. 127-135

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we find the conditions for validity of Liouville-type theorems for bounded solutions of the stationary Ginsburg–Landau equation and quasilinear elliptic inequality $-\Delta u \geqslant u^q$, $q>1$, on quasi-model Riemannian manifolds.
@article{ISU_2015_15_2_a0,
     author = {S. S. Vikharev},
     title = {Some {Liouville-type} theorems for the stationary {Ginsburg--Landau} equation on quasi-model {Riemannian} manifolds},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {127--135},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a0/}
}
TY  - JOUR
AU  - S. S. Vikharev
TI  - Some Liouville-type theorems for the stationary Ginsburg--Landau equation on quasi-model Riemannian manifolds
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2015
SP  - 127
EP  - 135
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a0/
LA  - ru
ID  - ISU_2015_15_2_a0
ER  - 
%0 Journal Article
%A S. S. Vikharev
%T Some Liouville-type theorems for the stationary Ginsburg--Landau equation on quasi-model Riemannian manifolds
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2015
%P 127-135
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a0/
%G ru
%F ISU_2015_15_2_a0
S. S. Vikharev. Some Liouville-type theorems for the stationary Ginsburg--Landau equation on quasi-model Riemannian manifolds. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 2, pp. 127-135. http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a0/