Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2015_15_1_a9, author = {S. P. Bezglasnyi}, title = {On control of motion of a parametric pendulum}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {67--73}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a9/} }
TY - JOUR AU - S. P. Bezglasnyi TI - On control of motion of a parametric pendulum JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2015 SP - 67 EP - 73 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a9/ LA - ru ID - ISU_2015_15_1_a9 ER -
S. P. Bezglasnyi. On control of motion of a parametric pendulum. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 1, pp. 67-73. http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a9/
[1] Krasil'nikov P. S., “The Non-linear oscillations of a pendulum of variable length on a vibrating base”, J. Prikl. Mat. Mekh., 76:1 (2012), 25–35
[2] Andreev A. S., “Lyapunov Functions Method in the Problems of Control”, J. Srednevolzhskogo Math. Obschestva, 12:4 (2010), 64–73 (in Russian)
[3] Andreev A. S., “On the stability of equilibrium position of the non-autonomous mechanical system”, J. Prikl. Mat. Mekh., 60:3 (1996), 388–396
[4] Bezglasnyi S. P., Mysina O. A., “Stabilization of Program Motions of a Rigid Body on a Moving Platform”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 8:4 (2008), 44–52 (in Russian)
[5] Bezglasnyi S. P., Batina E. S., Vorobyov A. S., “Synthesis of Asymptotically Stable Motion of a Robot Arm Manipulator”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 13:4(1) (2013), 36–42 (in Russian)
[6] Strizhak T. G., Methods for Studying «Pendulum»-Type Dynamical Systems, Nauka, Alma-Ata, 1981, 253 pp. (in Russian)
[7] Seyranian A. P., “The swing: Parametric resonance”, J. Prikl. Mat. Mekh., 68:5 (2004), 757–764
[8] Akulenko L. D., Nesterov S. V., “The stability of the equilibrium of a pendulum of variable length”, J. Prikl. Mat. Mekh., 73:6 (2009), 642–647
[9] Akulenko L. D., “Parametric control of vibrations and rotations of a compound pendulum (a swing)”, J. Prikl. Mat. Mekh., 57:2 (1993), 301–310
[10] Lavrovskii E. K., Formal'skii A. M., “Optimal control of the pumping and damping of a swing”, J. Prikl. Mat. Mekh., 57:2 (1993), 311–320
[11] Aslanov V. S., Bezglasnyi S. P., “Stability and instability of controlled motions of a two-mass pendulum of variable length”, Mechanics of Solids, 47:3 (2012), 285–297 | DOI
[12] Aslanov V. S., Bezglasnyi S. P., “Gravitational stabilization of a satellite using a movable mass”, J. Prikl. Mat. Mekh., 76:4 (2012), 405–412
[13] Bezglasnyi S. P., Pijakina E. E., Talipova A. A., “Limited Control of Dual-mass Pendulum Motion”, Avtomatizacija processov upravlenija, 34:4 (2013), 35–41 (in Russian)
[14] Malkin I. G., Theory of Motion Stability, Nauka, M., 1966, 530 pp. (in Russian)