@article{ISU_2015_15_1_a8,
author = {A. P. Khromov},
title = {About the classical solution of the mixed problem for the wave equation},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {56--66},
year = {2015},
volume = {15},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a8/}
}
TY - JOUR AU - A. P. Khromov TI - About the classical solution of the mixed problem for the wave equation JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2015 SP - 56 EP - 66 VL - 15 IS - 1 UR - http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a8/ LA - ru ID - ISU_2015_15_1_a8 ER -
A. P. Khromov. About the classical solution of the mixed problem for the wave equation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 1, pp. 56-66. http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a8/
[1] Steklov V. A., The main tasks of mathematical physics, Nauka, M., 1983, 432 pp. (in Russian)
[2] Petrovsky I. G., Lectures on partial differential equations, Dover Publ. Inc., 1992, 245 pp.
[3] Smirnov V. I., A Course of Higher Mathematics, in 5 vol., v. 4, Gostekhizdat, M., 1953, 204 pp. (in Russian)
[4] Ladyzhenskaya O. A., Mixed problem for a hyperbolic equation, Gostekhizdat, M., 1953, 282 pp. (in Russian)
[5] Il'in V. A., Selected works, in 2 vol., v. 1, OOO «Maks-press», M., 2008, 727 pp. (in Russian)
[6] Il'in V. A., “The solvability of mixed problems for hyperbolic and parabolic equations”, Rus. Math. Surv., 15:1 (1960), 85–142 | DOI
[7] Chernyatin V. A., Justification of the Fourier method in a mixed problem for partial differential equations, Moscow Univ. Press, M., 1991, 112 pp. (in Russian)
[8] Krylov A. N., On some differential equations of mathematical physics with applications in technical matters, GITTL, L., 1950, 368 pp. (in Russian)
[9] Burlutskaya M. Sh., Khromov A. P., “Initial-boundary value problems for first-order hyperbolic equations with involution”, Doklady Math., 84:3 (2011), 783–786 | DOI
[10] Naymark M. A., Linear differential operators, Nauka, M., 1969, 528 pp. (in Russian)
[11] Rasulov M. L., The method of the contour integral, Nauka, M., 1964, 462 pp. (in Russian)
[12] Vagabov A. I., Introduction to the spectral theory of differential operators, Rostov Univ. Press, Rostov-on-Don, 1994, 106 pp. (in Russian)
[13] Marchenko V. A., Sturm–Liouville Operators and Applications, Naukova Dumka, Kiev, 1977, 332 pp. (in Russian)