The solution of the homogeneous Riemann boundary value problem with~a~countable set of points of discontinuity of the first kind its coefficient
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 1, pp. 50-56

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Riemann homogeneous boundary value problem with a countable set of points of discontinuity of the first kind in the case, when it is required to find two functions, analytic, respectively, in the upper and lower half-plane, for a given linear boundary condition on the real axis, connecting the boundary values of the unknown functions.
@article{ISU_2015_15_1_a7,
     author = {R. B. Salimov},
     title = {The solution of the homogeneous {Riemann} boundary value problem with~a~countable set of points of discontinuity of the first kind its coefficient},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {50--56},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a7/}
}
TY  - JOUR
AU  - R. B. Salimov
TI  - The solution of the homogeneous Riemann boundary value problem with~a~countable set of points of discontinuity of the first kind its coefficient
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2015
SP  - 50
EP  - 56
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a7/
LA  - ru
ID  - ISU_2015_15_1_a7
ER  - 
%0 Journal Article
%A R. B. Salimov
%T The solution of the homogeneous Riemann boundary value problem with~a~countable set of points of discontinuity of the first kind its coefficient
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2015
%P 50-56
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a7/
%G ru
%F ISU_2015_15_1_a7
R. B. Salimov. The solution of the homogeneous Riemann boundary value problem with~a~countable set of points of discontinuity of the first kind its coefficient. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 1, pp. 50-56. http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a7/