The solution of the homogeneous Riemann boundary value problem with~a~countable set of points of discontinuity of the first kind its coefficient
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 1, pp. 50-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Riemann homogeneous boundary value problem with a countable set of points of discontinuity of the first kind in the case, when it is required to find two functions, analytic, respectively, in the upper and lower half-plane, for a given linear boundary condition on the real axis, connecting the boundary values of the unknown functions.
@article{ISU_2015_15_1_a7,
     author = {R. B. Salimov},
     title = {The solution of the homogeneous {Riemann} boundary value problem with~a~countable set of points of discontinuity of the first kind its coefficient},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {50--56},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a7/}
}
TY  - JOUR
AU  - R. B. Salimov
TI  - The solution of the homogeneous Riemann boundary value problem with~a~countable set of points of discontinuity of the first kind its coefficient
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2015
SP  - 50
EP  - 56
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a7/
LA  - ru
ID  - ISU_2015_15_1_a7
ER  - 
%0 Journal Article
%A R. B. Salimov
%T The solution of the homogeneous Riemann boundary value problem with~a~countable set of points of discontinuity of the first kind its coefficient
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2015
%P 50-56
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a7/
%G ru
%F ISU_2015_15_1_a7
R. B. Salimov. The solution of the homogeneous Riemann boundary value problem with~a~countable set of points of discontinuity of the first kind its coefficient. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 1, pp. 50-56. http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a7/

[1] Muskhelishvili N. I., Singular integral equations, Nauka, M., 1968, 511 pp. (in Russian)

[2] Gakhov F. D., Boundary value problems, Nauka, M., 1977, 640 pp. (in Russian)

[3] Govorov N. V., Riemann's boundary problem with infinite index, Nauka, M., 1986, 239 pp. (in Russian)

[4] Tolochko M. E., “About the solvability of the homogeneous Riemann boundary value problem for the half-plane with infinite index”, Izvestiya Akad. Nauk BSSR. Ser. Fiz.-mat. nauki, 1972, no. 5, 34–41 (in Russian)

[5] Sandrygailo I. E., “On Hilbert–Rieman boundary value problem for half-plane with infinite index”, Izvestiya Akad. Nauk BSSR. Ser. Fiz.-Mat. Nauki, 1974, no. 6, 872–875 (in Russian)

[6] Monahov V. N., Semenko E. V., “Boundary value problem with infinite index in Hardy spaces”, Dokl. Akad. Nauk SSSR, 291:3 (1986), 544–547 (in Russian)

[7] Alehno A. G., “Sufficient conditions for the solvability of homogeneous Riemann boundary value problem with infinite index”, Trudy matematicheskogo tsentra imeni N. I. Lobachevskogo, 14, Kazan, 2002, 71–77 (in Russian)

[8] Garifianov F. N., “About a special case of the Riemann problem”, Trydu seminara po kraevum zadacham, 22, Kazan, 1984, 66–68 (in Russian)

[9] Katc B. A., “About Riemann problem with an oscillating coefficient”, Trydu seminara po kraevum zadacham, 14, Kazan, 1977, 110–120 (in Russian)

[10] Zhuravleva M. I., “Homogeneous Riemann boundary problem with infinite index with scating many discontinuities of the first kind it factor”, Dokl. Akad. Nauk SSSR, 210:1 (1973), 15–17 (in Russian)

[11] Markushevich A. I., The theory of analytic functions, in 2 vol., v. 1, Nauka, M., 1968 (in Russian)

[12] Salimov R. B., Shabalin P. L., “The regularizing factor method for solving a homogeneous Hilbert problem with an infinite index”, Russian Math. (Iz. VUZ), 45:4 (2001), 74–77