Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2015_15_1_a0, author = {A. H. Begmatov and A. O. Pirimbetov and A. K. Seidullaev}, title = {Weakly ill-posed problems of integral geometry witch perturbation on polygonal lines}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {5--12}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a0/} }
TY - JOUR AU - A. H. Begmatov AU - A. O. Pirimbetov AU - A. K. Seidullaev TI - Weakly ill-posed problems of integral geometry witch perturbation on polygonal lines JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2015 SP - 5 EP - 12 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a0/ LA - ru ID - ISU_2015_15_1_a0 ER -
%0 Journal Article %A A. H. Begmatov %A A. O. Pirimbetov %A A. K. Seidullaev %T Weakly ill-posed problems of integral geometry witch perturbation on polygonal lines %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2015 %P 5-12 %V 15 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a0/ %G ru %F ISU_2015_15_1_a0
A. H. Begmatov; A. O. Pirimbetov; A. K. Seidullaev. Weakly ill-posed problems of integral geometry witch perturbation on polygonal lines. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 1, pp. 5-12. http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a0/
[1] Lavrent'ev M. M., Romanov V. G., Shishatskii S. P., Ill-posed problems of mathematical physics and analysis, American Mathematical Society, Providence, 1986, 290 pp.
[2] Natterer F., The mathematics of computerized tomography, Classics in Applied Mathematics, SIAM, Philadelphia, 2001, 222 pp.
[3] Natterer F., Wubbeling F., Mathematical methods in image reconstruction, SIAM, Philadelphia, 2001, 213 pp.
[4] Begmatov A. H., “The integral geometry problem for a family of cones in the $n$-dimensional space”, Siberian Math. J., 37:3 (1996), 430–435 | DOI
[5] Uspenskii S. V., “On reconstruction of a function given integrals over a certain class of conic surfaces”, Siberian Math. J., 18:3 (1977), 675–684 (in Russian)
[6] Begmatov A. H., Pirimbetov A. O., Seidullaev A. K., “Problems of integral geometry in a strip on families of parabolic curves”, Reports of Russian Higher Education Academy of Sciences, 2012, no. 2 (19), 6–15 (in Russian)
[7] Begmatov A. H., Pirimbetov A. O., Seidullaev A. K., “Reconstruction stability in some problems of X-ray and seismic tomography”, Proc. of IFOST-2012, v. II, Tomsk Polytechnic University, 2012, 261–266
[8] Begmatov A. H., Djaykov G. M., “Reconstruction of a function from its spherical means”, Reports of Russian Higher Education Academy of Sciences, 2013, no. 1(20), 6–16 (in Russian)
[9] Begmatov A. H., “The uniqueness of a solution to a Volterra-type integral problem in the plane”, Doklady Math., 80:1 (2009), 528–530 | DOI
[10] Begmatov A. H., “A perturbed integral geometry problem in three-dimensional space”, Siberian Math. J., 41:1 (2000), 1–12 | DOI
[11] Begmatov A. H., Petrova N. N., “The problem of integral geometry with perturbation on elliptic curves in a strip”, Doklady Math., 83:1 (2011), 22–25 | DOI
[12] Trikomi F., Integral equations, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1957, 238 pp.