Green Function of the Dirichlet Boundary Value Problem for Polyharmonic Equation in a Ball Under Polynomial Data
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 4, pp. 550-558.

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical Dirichlet boundary value problem for the polyharmonic equation in the unit ball is considered. For this problem with polynomial right-hand side and zero boundary data a polynomial solution is constructed. Our approach is based on the Almansi representation of polyharmonic functions and on the previously obtained an explicit representation of the harmonic components, expressed through the given polyharmonic function. In the case of the harmonic equation the known representation of the solution through the Green function is obtained.
@article{ISU_2014_14_4_a8,
     author = {V. V. Karachik},
     title = {Green {Function} of the {Dirichlet} {Boundary} {Value} {Problem} for {Polyharmonic} {Equation} in a {Ball} {Under} {Polynomial} {Data}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {550--558},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a8/}
}
TY  - JOUR
AU  - V. V. Karachik
TI  - Green Function of the Dirichlet Boundary Value Problem for Polyharmonic Equation in a Ball Under Polynomial Data
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 550
EP  - 558
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a8/
LA  - ru
ID  - ISU_2014_14_4_a8
ER  - 
%0 Journal Article
%A V. V. Karachik
%T Green Function of the Dirichlet Boundary Value Problem for Polyharmonic Equation in a Ball Under Polynomial Data
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 550-558
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a8/
%G ru
%F ISU_2014_14_4_a8
V. V. Karachik. Green Function of the Dirichlet Boundary Value Problem for Polyharmonic Equation in a Ball Under Polynomial Data. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 4, pp. 550-558. http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a8/

[1] Nicolescu N., “Probléme de l'analyticité par rapport á un opérateur linéaire”, Studia Math., 16 (1958), 353–363 | MR | Zbl

[2] Kal'menov T. S., Suragan D., “On a new method for constructing the Green function of the Dirichlet problem for the polyharmonic equation”, Differ. Equations, 48:3 (2012), 441–445 | DOI | MR | Zbl

[3] Kanguzhin B. E., Koshanov B. D., “The Green function representation and properties in the Dirichlet problem for polyharmonic equations”, Math. J., 8:1 (2008), 50–58 | MR | Zbl

[4] Karachik V. V., “On Solvability Conditions for the Neumann Problem for a Polyharmonic Equation in the Unit Ball”, J. Appl. Industr. Math., 8:1 (2014), 1–14 | DOI | MR | MR

[5] Karachik V. V., “Construction of polynomial solutions to some boundary value problems for Poisson's equation”, Comput. Math. Math. Phys., 51:9 (2011), 1567–1587 | DOI | MR | Zbl

[6] Karachik V. V., Antropova N. A., “Polynomial Solutions of the Dirichlet Problem for the Biharmonic Equation in the Ball”, Differ. Equations, 49:2 (2013), 251–256 | DOI | MR | Zbl

[7] Karachik V. V., “On an expansion of Almansi type”, Math. Notes, 83:3–4 (2008), 335–344 | DOI | DOI | MR | Zbl

[8] Karachik V. V., “Application of the Almansi formula for constructing polynomial solutions to the Dirichlet problem for a second-order equation”, Russ. Math., 56:6 (2012), 20–29 | DOI | MR | Zbl

[9] Bateman H., Erdélyi A., Higher transcendental functions, v. 2, McGraw-Hill, New York, 1953 | MR | MR

[10] Karachik V. V., “On one set of orthogonal harmonic polynomials”, Proc. Amer. Math. Soc., 126:12 (1998), 3513–3519 | DOI | MR | Zbl