On Equivalence of the Method of Steepest Descent and the Method of~Hypodifferential Descent in Some Constrained Optimization Problems
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 4, pp. 532-542.

Voir la notice de l'article provenant de la source Math-Net.Ru

The method of exact penalty functions is widely used for the study of constrained optimization problems. The approach based on exact penalization was successfully applied to the study of optimal control problems and various problems of the calculus of variations, computational geometry and mathematical diagnostics. It is worth mentioning that even if the constrained optimization problem under consideration is smooth, the equivalent unconstrained optimization problems constructed via exact penalization technique is essentially nonsmooth. In this paper, we study infinite dimensional optimization problems with linear constraints with the use of the theory of exact penalty functions. We consider the method of steepest descent and the method of hypodifferential descent for this type of problems. We obtain some properties of these methods and study the cases when they coincide.
@article{ISU_2014_14_4_a6,
     author = {M. V. Dolgopolik and G. Sh. Tamasyan},
     title = {On {Equivalence} of the {Method} of {Steepest} {Descent} and the {Method} {of~Hypodifferential} {Descent} in {Some} {Constrained} {Optimization} {Problems}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {532--542},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a6/}
}
TY  - JOUR
AU  - M. V. Dolgopolik
AU  - G. Sh. Tamasyan
TI  - On Equivalence of the Method of Steepest Descent and the Method of~Hypodifferential Descent in Some Constrained Optimization Problems
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 532
EP  - 542
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a6/
LA  - ru
ID  - ISU_2014_14_4_a6
ER  - 
%0 Journal Article
%A M. V. Dolgopolik
%A G. Sh. Tamasyan
%T On Equivalence of the Method of Steepest Descent and the Method of~Hypodifferential Descent in Some Constrained Optimization Problems
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 532-542
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a6/
%G ru
%F ISU_2014_14_4_a6
M. V. Dolgopolik; G. Sh. Tamasyan. On Equivalence of the Method of Steepest Descent and the Method of~Hypodifferential Descent in Some Constrained Optimization Problems. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 4, pp. 532-542. http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a6/

[1] Eremin I. I., “The Penalty Method in Convex Programming”, Doklady Acad. Nauk SSSR, 143:4 (1967), 748–751 (in Russian) | MR

[2] Di Pillo G., Facchinei F., “Exact penalty functions for nondifferentiable programming problems”, Nonsmooth Optimization and Related Topics, eds. F. H. Clarke, V. F. Demyanov, F. Giannessi, Plenum, N.Y., 1989, 89–107 | DOI | MR

[3] Demyanov V. F., Di Pillo G., Facchinei F., “Exact penalization via Dini and Hadamard conditional derivatives”, Optim. Methods Softw., 9:1–3 (1998), 19–36 | DOI | MR | Zbl

[4] Demyanov V. F., “Exact penalty functions in nonsmooth optimization problems”, Vestnik of St. Petersburg Univ., Ser. 1, 1994, no. 4(22), 21–27 | MR | Zbl

[5] Demyanov V. F., Extremality Conditions and Variational Problems, Vyssh. Shkola, M., 2005, 335 pp. (in Russian)

[6] Demyanov V. F., “Nonsmooth optimization”, Lecture Notes in Math., 1989, eds. G. Di Pillo, F. Schoen, 2010, 55–163 | DOI | MR | Zbl

[7] Demyanov V. F., Tamasyan G. Sh., “Exact penalty functions in isoperimetric problems”, Optimization, 60:1 (2011), 153–177 | DOI | MR | Zbl

[8] Tamasyan G. Sh., “Numerical methods in problems of calculus of variations for functionals depending on higher order derivatives”, J. Math. Sci., 188:3 (2013), 299–321 | DOI | MR | Zbl

[9] Dolgopolik M. V., Tamasyan G. Sh., “Method of steepest descent for two-dimensional problems of calculus of variations”, Constructive Nonsmooth Analysis and Related Topics, Springer Optimization and its Applications, 87, 2014, 101–113 | DOI | MR | Zbl

[10] Demyanov V. F., Giannessi F., Karelin V. V., “Optimal Control Problems via Exact Penalty Functions”, J. Global Optim., 12:3 (1998), 215–223 | DOI | MR | Zbl

[11] Tamasyan G. Sh., Chumakov A. A., “Finding the distance between the ellipsoids”, Diskretn. Anal. Issled. Oper., 21:3 (2014), 87–102 (in Russian)

[12] Demyanov V. F., “Mathematical diagnostics via nonsmooth analysis”, Optim. Method. Softw., 20:2–3 (2005), 197–212 | DOI | MR

[13] Demyanov V. F., Rubinov A. M., Constructive nonsmooth analysis, Verl. Peter Lang, Frankfurt a/M, 1995, 416 pp. | MR | MR | Zbl

[14] Demyanov V. F., Vasiliev L. V., Nondifferentiable optimization, Springer-Optimization Software, New York, 1985, 452 pp. | MR | MR

[15] Ioffe A. D., “Metric regularity and subdifferential calculus”, Russ. Math. Surv., 55:3 (2000), 501–558 | DOI | DOI | MR | Zbl

[16] Demyanov V. F., Malozemov V. N., Introduction to minimax, Dover, New York, 1990, 307 pp. | MR | MR | Zbl

[17] Borwein J. M., Zhu Q. J., “A survey on subdifferential calculus with applications”, Nonlinear Analysis: Theory, Methods and Applications, 38:6 (1999), 687–773 | DOI | MR | Zbl

[18] Demyanov V. F., Dolgopolik M. V., “Codifferentiable functions in Banach spaces: methods and applications to problems of variation calculus”, Vestnik St.-Petersburg. Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2013, no. 3, 48–67 | MR

[19] Demyanov V. F., “Conditions for an extremum in metric spaces”, J. Global Optim., 17:1–4 (2000), 55–63 | DOI | MR | Zbl

[20] Gantmacher F. R., The Theory of Matrices, Amer. Math. Soc., AMS Chelsea Publ., 2000, 660 pp. | MR | MR | Zbl

[21] Kantorovich L. V., Akilov G. P., Functional analysis, Pergamon Press, Oxford–New York, 1982, 589 pp. | MR | Zbl