Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2014_14_4_a4, author = {S. S. Volosivets}, title = {Embedding {Theorems} for $\mathbf{P}$-nary {Hardy} and $VMO$ {Spaces}}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {518--525}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a4/} }
TY - JOUR AU - S. S. Volosivets TI - Embedding Theorems for $\mathbf{P}$-nary Hardy and $VMO$ Spaces JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2014 SP - 518 EP - 525 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a4/ LA - ru ID - ISU_2014_14_4_a4 ER -
S. S. Volosivets. Embedding Theorems for $\mathbf{P}$-nary Hardy and $VMO$ Spaces. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 4, pp. 518-525. http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a4/
[1] Agaev G. N., Vilenkin N. Ya., Dzhafarli G. M., Rubinstein A. I., Multiplicative systems of functions and harmonic analysis on zero-dimensional groups, Elm, Baku, 1980 (in Russian) | MR
[2] Schipp F., Wade W. R., Simon P., Walsh series. An introduction to dyadic analysis, Akademiai Kiado, Budapest, 1990, 560 pp. | MR
[3] Golubov B. I., Efimov A. V., Skvortsov V. A., Walsh series and transforms. Theory and applications, Kluwer, Dordrecht, 1991 | MR | MR | Zbl | Zbl
[4] Ul'janov P. L., “Absolute and uniform convergence of Fourier series”, Math. USSR-Sb., 1:2 (1967), 169–197 | DOI | MR
[5] Geronimus Ya. L., “Some properties of functions of class $L^p$”, Izv. Vyssh. Uchebn. Zaved. Mat., 1958, no. 1, 24–32 (in Russian) | MR | Zbl
[6] Andrienko V. A., “The imbedding of certain classes of functions”, Math. USSR-Izv., 1:6 (1967), 1255–1270 | DOI | MR | MR
[7] Ul'janov P. L., “The imbedding of certain function classes $H^\omega_p$”, Math. USSR-Izv., 2:3 (1968), 601–637 | DOI | Zbl
[8] Golubov B. I., “Best approximations of functions in the $L_p$ metric by Haar and Walsh polynomials”, Math. USSR-Sb., 16:2 (1972), 265–285 | DOI | MR | Zbl | Zbl
[9] Timan M. F., Rubinshtejn A. I., “On imbedding of classes of functions, defined in zero-dimensional groups”, Soviet Math., 24:8 (1980), 74–85 | MR | Zbl | Zbl
[10] Fridli S., “Embedding theorems involving dyadic Hardy and $VMO$ spaces”, Approximation theory (Kecskemet, 1990), Colloq. Math. Soc. Janos Bolyai, 58, North-Holland, Amsterdam, 1991, 287–301 | MR
[11] Weisz F., Martingale Hardy spaces and their applications in Fourier analysis, Lecture Notes in Math., 1568, Springer-Verlag, Berlin–Heidelberg, 1994, 228 pp. | MR | Zbl