Embedding Theorems for $\mathbf{P}$-nary Hardy and $VMO$ Spaces
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 4, pp. 518-525.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper several embedding theorems of P. L. Ul'yanov type for Hölder spaces connected with $\mathbf{P}$-nary Hardy, $VMO$, $L^1$ and uniform metric on Vilenkin groups are proved. Its sharpness is also established. The sufficient conditions for the convergence of Fourier series with respect to multiplicative systems in Hardy space and uniform metric are also given.
@article{ISU_2014_14_4_a4,
     author = {S. S. Volosivets},
     title = {Embedding {Theorems} for $\mathbf{P}$-nary {Hardy} and $VMO$ {Spaces}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {518--525},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a4/}
}
TY  - JOUR
AU  - S. S. Volosivets
TI  - Embedding Theorems for $\mathbf{P}$-nary Hardy and $VMO$ Spaces
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 518
EP  - 525
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a4/
LA  - ru
ID  - ISU_2014_14_4_a4
ER  - 
%0 Journal Article
%A S. S. Volosivets
%T Embedding Theorems for $\mathbf{P}$-nary Hardy and $VMO$ Spaces
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 518-525
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a4/
%G ru
%F ISU_2014_14_4_a4
S. S. Volosivets. Embedding Theorems for $\mathbf{P}$-nary Hardy and $VMO$ Spaces. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 4, pp. 518-525. http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a4/

[1] Agaev G. N., Vilenkin N. Ya., Dzhafarli G. M., Rubinstein A. I., Multiplicative systems of functions and harmonic analysis on zero-dimensional groups, Elm, Baku, 1980 (in Russian) | MR

[2] Schipp F., Wade W. R., Simon P., Walsh series. An introduction to dyadic analysis, Akademiai Kiado, Budapest, 1990, 560 pp. | MR

[3] Golubov B. I., Efimov A. V., Skvortsov V. A., Walsh series and transforms. Theory and applications, Kluwer, Dordrecht, 1991 | MR | MR | Zbl | Zbl

[4] Ul'janov P. L., “Absolute and uniform convergence of Fourier series”, Math. USSR-Sb., 1:2 (1967), 169–197 | DOI | MR

[5] Geronimus Ya. L., “Some properties of functions of class $L^p$”, Izv. Vyssh. Uchebn. Zaved. Mat., 1958, no. 1, 24–32 (in Russian) | MR | Zbl

[6] Andrienko V. A., “The imbedding of certain classes of functions”, Math. USSR-Izv., 1:6 (1967), 1255–1270 | DOI | MR | MR

[7] Ul'janov P. L., “The imbedding of certain function classes $H^\omega_p$”, Math. USSR-Izv., 2:3 (1968), 601–637 | DOI | Zbl

[8] Golubov B. I., “Best approximations of functions in the $L_p$ metric by Haar and Walsh polynomials”, Math. USSR-Sb., 16:2 (1972), 265–285 | DOI | MR | Zbl | Zbl

[9] Timan M. F., Rubinshtejn A. I., “On imbedding of classes of functions, defined in zero-dimensional groups”, Soviet Math., 24:8 (1980), 74–85 | MR | Zbl | Zbl

[10] Fridli S., “Embedding theorems involving dyadic Hardy and $VMO$ spaces”, Approximation theory (Kecskemet, 1990), Colloq. Math. Soc. Janos Bolyai, 58, North-Holland, Amsterdam, 1991, 287–301 | MR

[11] Weisz F., Martingale Hardy spaces and their applications in Fourier analysis, Lecture Notes in Math., 1568, Springer-Verlag, Berlin–Heidelberg, 1994, 228 pp. | MR | Zbl