On Spectrum of Schr\"odinger Operator on Manifold of a Special Type
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 4, pp. 584-589

Voir la notice de l'article provenant de la source Math-Net.Ru

The main subject of the paper is spectrum of the Schrödinger operator on weighted quasimodel manifold with an end, which is warped product of a special type. We prove the criterion of discreteness for the spectrum of the operator in terms of metric coefficients and potential of the operator. As the conclusion we made some remarks on the corollaries of the proved theorem and on its extension to more complex quasimodel manifolds.
@article{ISU_2014_14_4_a12,
     author = {A. V. Svetlov},
     title = {On {Spectrum} of {Schr\"odinger} {Operator} on {Manifold} of a {Special} {Type}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {584--589},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a12/}
}
TY  - JOUR
AU  - A. V. Svetlov
TI  - On Spectrum of Schr\"odinger Operator on Manifold of a Special Type
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 584
EP  - 589
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a12/
LA  - ru
ID  - ISU_2014_14_4_a12
ER  - 
%0 Journal Article
%A A. V. Svetlov
%T On Spectrum of Schr\"odinger Operator on Manifold of a Special Type
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 584-589
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a12/
%G ru
%F ISU_2014_14_4_a12
A. V. Svetlov. On Spectrum of Schr\"odinger Operator on Manifold of a Special Type. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 4, pp. 584-589. http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a12/