Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2014_14_4_a12, author = {A. V. Svetlov}, title = {On {Spectrum} of {Schr\"odinger} {Operator} on {Manifold} of a {Special} {Type}}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {584--589}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a12/} }
TY - JOUR AU - A. V. Svetlov TI - On Spectrum of Schr\"odinger Operator on Manifold of a Special Type JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2014 SP - 584 EP - 589 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a12/ LA - ru ID - ISU_2014_14_4_a12 ER -
%0 Journal Article %A A. V. Svetlov %T On Spectrum of Schr\"odinger Operator on Manifold of a Special Type %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2014 %P 584-589 %V 14 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a12/ %G ru %F ISU_2014_14_4_a12
A. V. Svetlov. On Spectrum of Schr\"odinger Operator on Manifold of a Special Type. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 4, pp. 584-589. http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a12/
[1] Pinsky M., “The spectrum of the Laplacian on a manifold of negative curvature, I”, J. Diff. Geom., 13 (1978), 87–91 | MR | Zbl
[2] Baider A., “Noncompact Riemannian manifolds with discrete spectra”, J. Diff. Geom., 14 (1979), 41–57 | MR | Zbl
[3] Brooks R., “A relation between growth and the spectrum of the Laplacian”, Math. Z., 178 (1981), 501–508 | DOI | MR | Zbl
[4] Svetlov A. V., “A discreteness criterion for the spectrum of the Laplace–Beltrami operator on quasimodel manifolds”, Siberian Math. J., 43:6 (2002), 1103–1111 | DOI | MR | Zbl
[5] Harmer M., “Discreteness of the spectrum of the Laplacian and stochastic incompleteness”, J. Geom. Anal., 19:2 (2009), 358–372 | DOI | MR | Zbl
[6] Kondratev V., Shubin M., “Discreteness of spectrum for the Schrödinger operators on manifolds of bounded geometry”, Operator theory : Advances and Applications, 110 (1999), 185–226 | DOI | MR | Zbl
[7] Shen Z., “The spectrum of Schrödinger operators with positive potentials in Riemannian manifolds”, Proc. Amer. Math. Soc., 131:11 (2003), 3447–3456 | DOI | MR | Zbl
[8] Svetlov A. V., “Discreteness criterion for the spectrum of the Schrödinger operator on weighted quasimodel manifolds”, Intern. J. Pure Appl. Math., 89:3 (2013), 393–400 | DOI | Zbl
[9] Losev A. G., “On some Liouville theorems on noncompact Riemannian manifolds”, Siberian Math. J., 39:1 (1998), 74–80 | DOI | MR | Zbl
[10] Losev A. G., Mazepa E. A., “Bounded solutions of the Schrödinger equation on Riemannian products”, St. Petersburg Math. J., 13:1 (2001), 57–73 | MR
[11] Korolkov S. A., Losev A. G., “Generalized harmonic functions of Riemannian manifolds with ends”, Mathematische Zeitschrift, 272:1–2 (2012), 459–472 | DOI | MR | Zbl
[12] Grigor'yan A. A., “Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds”, Bull. Amer. Math. Soc., 36 (1999), 135–249 | DOI | MR | Zbl
[13] Svetlov A. V., “The spectrum of the Schrodinger operator on the warped products”, Vestnik VolGU. Ser. 1, Matematika. Fizika, 2002, no. 7, 12–19 (in Russian)
[14] Reed M. C., Simon B., Methods of Modern Mathematical Physics, v. 1, Functional analysis, Academic Press, London, 1980, 325 pp. | MR | MR | Zbl
[15] Schechter M., Spectra of partial differential operators, North-Holland, Amsterdam, 1971, 295 pp. | MR | Zbl
[16] Molchanov A. M., “On conditions for discreteness of the spectrum of self-adjoint differential equations of the second order”, Tr. Mosk. Mat. Obs., 2, 1953, 169–199 (in Russian) | Zbl
[17] Svetlov A. V., “Discreteness criterion for the spectrum of the Schrödinger operator on manifolds of a special kind”, Modern problems of function theory and its applications, Texts of 17th Intern. Saratov Winter School, Saratov, 2014, 245–247 (in Russian)