Martingales and Theorems of Cantor--Young--Bernstein and de la Vall\'ee Poussin
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 4, pp. 569-574

Voir la notice de l'article provenant de la source Math-Net.Ru

Uniqueness problems for one-dimensional Haar series and for multiple ones have understood in numerous works. It is well-known that the subsequence of the partial sums $S_{2^k}$ of an arbitrary Haar series can be represented as a discrete-time martingale on some filtered probability space $(\Omega,\,\mathcal{F},\,(\mathcal{F}_k ),\, \mathbf{P})$. In paper the concept of a $\mathcal{U}$-set for martingales is presented and some uniqueness theorems for martingales on arbitrary compact filtered probability spaces are established. In particular, it is proved that every set $U \in \cup_{k=0}^\infty \mathcal{F}_k$ with $\mathbf{P} (U)=0$ is a $\mathcal{U}$-set for martingales on a compact space $(\Omega,\,\mathcal{F},\,(\mathcal{F}_k ),\, \mathbf{P})$ (Cantor–Young–Bernstein type theorem). The result above is supplemented by some de la Vallée Poussin type theorems.
@article{ISU_2014_14_4_a10,
     author = {M. G. Plotnikov and Ju. A. Plotnikova},
     title = {Martingales and {Theorems} of {Cantor--Young--Bernstein} and de la {Vall\'ee} {Poussin}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {569--574},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a10/}
}
TY  - JOUR
AU  - M. G. Plotnikov
AU  - Ju. A. Plotnikova
TI  - Martingales and Theorems of Cantor--Young--Bernstein and de la Vall\'ee Poussin
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 569
EP  - 574
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a10/
LA  - ru
ID  - ISU_2014_14_4_a10
ER  - 
%0 Journal Article
%A M. G. Plotnikov
%A Ju. A. Plotnikova
%T Martingales and Theorems of Cantor--Young--Bernstein and de la Vall\'ee Poussin
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 569-574
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a10/
%G ru
%F ISU_2014_14_4_a10
M. G. Plotnikov; Ju. A. Plotnikova. Martingales and Theorems of Cantor--Young--Bernstein and de la Vall\'ee Poussin. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 4, pp. 569-574. http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a10/