On Divergence Almost Everywhere of Fourier Series of Continuous Functions of Two Variables
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 4, pp. 497-505

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider one type of convergence of double trigonometric Fourier series intermediate between convergence over squares and $\lambda$-convergence for $\lambda>1$. We construct an example of continuous functions of two variables, Fourier series of which diverges in this sense, almost everywhere.
@article{ISU_2014_14_4_a1,
     author = {N. Yu. Antonov},
     title = {On {Divergence} {Almost} {Everywhere} of {Fourier} {Series} of {Continuous} {Functions} of {Two} {Variables}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {497--505},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a1/}
}
TY  - JOUR
AU  - N. Yu. Antonov
TI  - On Divergence Almost Everywhere of Fourier Series of Continuous Functions of Two Variables
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 497
EP  - 505
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a1/
LA  - ru
ID  - ISU_2014_14_4_a1
ER  - 
%0 Journal Article
%A N. Yu. Antonov
%T On Divergence Almost Everywhere of Fourier Series of Continuous Functions of Two Variables
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 497-505
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a1/
%G ru
%F ISU_2014_14_4_a1
N. Yu. Antonov. On Divergence Almost Everywhere of Fourier Series of Continuous Functions of Two Variables. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 4, pp. 497-505. http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a1/