Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2014_14_3_a8, author = {A. A. Tyleneva}, title = {Approximation of the {Riemann--Liouville} {Integrals} by {Algebraic} {Polynomials} on the {Segment}}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {305--311}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a8/} }
TY - JOUR AU - A. A. Tyleneva TI - Approximation of the Riemann--Liouville Integrals by Algebraic Polynomials on the Segment JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2014 SP - 305 EP - 311 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a8/ LA - ru ID - ISU_2014_14_3_a8 ER -
%0 Journal Article %A A. A. Tyleneva %T Approximation of the Riemann--Liouville Integrals by Algebraic Polynomials on the Segment %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2014 %P 305-311 %V 14 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a8/ %G ru %F ISU_2014_14_3_a8
A. A. Tyleneva. Approximation of the Riemann--Liouville Integrals by Algebraic Polynomials on the Segment. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 3, pp. 305-311. http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a8/
[1] Terekhin A. P., “Approximation of bounded $p$-variation functions”, Izvestiya vuzov. Matematika, 1965, no. 2, 171–187 (in Russian) | MR
[2] Samko S. G., Kilbas A. A., Marichev O. I., Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science, New York, 1993, 1006 pp. | MR | MR | Zbl | Zbl
[3] Kolmogorov A. N., Tikhomirov V. M., “$\varepsilon$-entropy and $\varepsilon$-capacity of a set in the functional space”, Uspehi mat. nauk, 14:2 (1959), 3–86 (in Russian) | Zbl
[4] Volosivets S. S., “Asymptotic properties of one compact set of smooth functions in the space of functions of bounded $p$-variation”, Math. Notes, 57:2 (1995), 148–157 | DOI | MR | Zbl
[5] Lorentz G. G., “Metric entropy and approximation”, Bull. Amer. Math. Soc., 72:6 (1966), 903–927 | DOI | MR
[6] Edwards R., Fourier Series: A modern introduction, v. 1, Springer, New York, 1982, 234 pp. | MR | MR | Zbl
[7] Ibragimov I. I., “On best approximation of a function whose $s$-th derivative has bounded variation on segment $[-1,1]$”, Doklady Akad. Nauk SSSR, 90:1 (1953), 13–15 (in Russian) | MR | Zbl
[8] DeVore R., Lorentz G. G., Constructive approximation, Springer, Berlin–Heidelberg, 1993, 449 pp. | MR | Zbl
[9] Korneichuk N. P., Exact Constants in Approximation Theory, Cambridge Univ. Press, Cambridge, 2009, 468 pp. | MR | MR
[10] Nasibov F. G., “On the order of best approximations of functions havong fractional derivative in Riemann–Liouville sense”, Izv. AN Azerb. SSR. Ser. fiz.-mat. nauk, 1962, no. 3, 51–57 (in Russian) | MR
[11] Clements G. F., “Entropies of several sets of real valued functions”, Pacific J. Math., 13:4 (1963), 1085–1095 | DOI | MR | Zbl