Approximation of the Riemann--Liouville Integrals by Algebraic Polynomials on the Segment
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 3, pp. 305-311.

Voir la notice de l'article provenant de la source Math-Net.Ru

The direct approximation theorem by algebraic polynomials is proved for Riemann–Liouville integrals of order $r>0$. As a corollary, we obtain asymptotic equalities for $\varepsilon$-entropy of the image of a Hölder type class under Riemann–Liouville integration operator.
@article{ISU_2014_14_3_a8,
     author = {A. A. Tyleneva},
     title = {Approximation of the {Riemann--Liouville} {Integrals} by {Algebraic} {Polynomials} on the {Segment}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {305--311},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a8/}
}
TY  - JOUR
AU  - A. A. Tyleneva
TI  - Approximation of the Riemann--Liouville Integrals by Algebraic Polynomials on the Segment
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 305
EP  - 311
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a8/
LA  - ru
ID  - ISU_2014_14_3_a8
ER  - 
%0 Journal Article
%A A. A. Tyleneva
%T Approximation of the Riemann--Liouville Integrals by Algebraic Polynomials on the Segment
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 305-311
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a8/
%G ru
%F ISU_2014_14_3_a8
A. A. Tyleneva. Approximation of the Riemann--Liouville Integrals by Algebraic Polynomials on the Segment. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 3, pp. 305-311. http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a8/

[1] Terekhin A. P., “Approximation of bounded $p$-variation functions”, Izvestiya vuzov. Matematika, 1965, no. 2, 171–187 (in Russian) | MR

[2] Samko S. G., Kilbas A. A., Marichev O. I., Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science, New York, 1993, 1006 pp. | MR | MR | Zbl | Zbl

[3] Kolmogorov A. N., Tikhomirov V. M., “$\varepsilon$-entropy and $\varepsilon$-capacity of a set in the functional space”, Uspehi mat. nauk, 14:2 (1959), 3–86 (in Russian) | Zbl

[4] Volosivets S. S., “Asymptotic properties of one compact set of smooth functions in the space of functions of bounded $p$-variation”, Math. Notes, 57:2 (1995), 148–157 | DOI | MR | Zbl

[5] Lorentz G. G., “Metric entropy and approximation”, Bull. Amer. Math. Soc., 72:6 (1966), 903–927 | DOI | MR

[6] Edwards R., Fourier Series: A modern introduction, v. 1, Springer, New York, 1982, 234 pp. | MR | MR | Zbl

[7] Ibragimov I. I., “On best approximation of a function whose $s$-th derivative has bounded variation on segment $[-1,1]$”, Doklady Akad. Nauk SSSR, 90:1 (1953), 13–15 (in Russian) | MR | Zbl

[8] DeVore R., Lorentz G. G., Constructive approximation, Springer, Berlin–Heidelberg, 1993, 449 pp. | MR | Zbl

[9] Korneichuk N. P., Exact Constants in Approximation Theory, Cambridge Univ. Press, Cambridge, 2009, 468 pp. | MR | MR

[10] Nasibov F. G., “On the order of best approximations of functions havong fractional derivative in Riemann–Liouville sense”, Izv. AN Azerb. SSR. Ser. fiz.-mat. nauk, 1962, no. 3, 51–57 (in Russian) | MR

[11] Clements G. F., “Entropies of several sets of real valued functions”, Pacific J. Math., 13:4 (1963), 1085–1095 | DOI | MR | Zbl