Approximation of the Riemann--Liouville Integrals by Algebraic Polynomials on the Segment
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 3, pp. 305-311

Voir la notice de l'article provenant de la source Math-Net.Ru

The direct approximation theorem by algebraic polynomials is proved for Riemann–Liouville integrals of order $r>0$. As a corollary, we obtain asymptotic equalities for $\varepsilon$-entropy of the image of a Hölder type class under Riemann–Liouville integration operator.
@article{ISU_2014_14_3_a8,
     author = {A. A. Tyleneva},
     title = {Approximation of the {Riemann--Liouville} {Integrals} by {Algebraic} {Polynomials} on the {Segment}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {305--311},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a8/}
}
TY  - JOUR
AU  - A. A. Tyleneva
TI  - Approximation of the Riemann--Liouville Integrals by Algebraic Polynomials on the Segment
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 305
EP  - 311
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a8/
LA  - ru
ID  - ISU_2014_14_3_a8
ER  - 
%0 Journal Article
%A A. A. Tyleneva
%T Approximation of the Riemann--Liouville Integrals by Algebraic Polynomials on the Segment
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 305-311
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a8/
%G ru
%F ISU_2014_14_3_a8
A. A. Tyleneva. Approximation of the Riemann--Liouville Integrals by Algebraic Polynomials on the Segment. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 3, pp. 305-311. http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a8/