Approximation of Functions by Fourier--Haar Sums in Weighted Variable Lebesgue and Sobolev Spaces
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 3, pp. 295-304.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is considered weighted variable Lebesgue $L^{p(x)}_w$ and Sobolev $W_{p(\cdot),w}$ spaces with conditions on exponent $p(x) \ge 1$ and weight $w(x)$ that provide Haar system to be a basis in $L^{p(x)}_w$. In such spaces there were obtained estimates of Fourier–Haar sums convergence speed. Estimates are given in terms of modulus of continuity $\Omega(f,\delta)_{p(\cdot),w}$, based on mean shift (Steklov's function).
@article{ISU_2014_14_3_a7,
     author = {M. G. Magomed-Kasumov},
     title = {Approximation of {Functions} by {Fourier--Haar} {Sums} in {Weighted} {Variable} {Lebesgue} and {Sobolev} {Spaces}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {295--304},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a7/}
}
TY  - JOUR
AU  - M. G. Magomed-Kasumov
TI  - Approximation of Functions by Fourier--Haar Sums in Weighted Variable Lebesgue and Sobolev Spaces
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 295
EP  - 304
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a7/
LA  - ru
ID  - ISU_2014_14_3_a7
ER  - 
%0 Journal Article
%A M. G. Magomed-Kasumov
%T Approximation of Functions by Fourier--Haar Sums in Weighted Variable Lebesgue and Sobolev Spaces
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 295-304
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a7/
%G ru
%F ISU_2014_14_3_a7
M. G. Magomed-Kasumov. Approximation of Functions by Fourier--Haar Sums in Weighted Variable Lebesgue and Sobolev Spaces. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 3, pp. 295-304. http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a7/

[1] Sharapudinov I. I., “Topology of the space $L^{p(t)}([0,1])$”, Mat. Zametki, 26:4 (1979), 613–632 | DOI | MR | Zbl

[2] Sharapudinov I. I., Some aspects of approximation theory in variable Lebesgue spaces, Vladikavkaz, 2012, 270 pp. (in Russian)

[3] Diening L., Harjulehto P., Hasto P., Ruzicka M., Lebesgue and Sobolev Spaces with Variable Exponents, Springer-Verlag, Berlin–Heidelberg, 2011, 509 pp. | DOI | MR | Zbl

[4] Cruz-Uribe D., Fiorenza A., Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Springer-Verlag, Berlin–Heidelberg, 2013, 312 pp. | DOI | MR | Zbl

[5] Sharapudinov I. I., “Approximation of function by Fourier–Haar sums in variable exponent Lebesgue and Sobolev spaces by Fourier–Haar sums”, Sb. Math., 205:2 (2014), 145–160 | DOI | MR

[6] Magomed-Kasumov M. G., “Basis property of the Haar system in the weighted variable Lebesgue spaces”, Poriadkovyi analiz i smezhnye voprosy matematicheskogo modelirovaniia, Tezisy dokladov mezhdunarodnoi nauchnoi konferentsii (Vladikavkaz, 14–20.07.2013), Vladikavkaz, 2013, 68–69 (in Russian)

[7] Magomed-Kasumov M. G., “Basis property of the Haar system in the weighted variable Lebesgue spaces”, Vladikavkaz Mathematical Journal, 16:3 (2014), 38–46 (in Russian)

[8] Kashin B. S., Saakyan A. A., Orthogonal series, Translations of Math. Monographs, 75, Amer. Math. Soc., Providence, RI, 1989 | MR | MR | Zbl | Zbl

[9] Sharapudinov I. I., “On the basis property of the Haar system in the space $L^{p}(t) ([0,1])$ and the principle of localization in the mean”, Math. of the USSR-Sbornik, 58:1 (1987), 279–287 | DOI | MR | MR | Zbl

[10] Guven A., Israfilov D. M., “Trigonometric approximation in generalized Lebesgue spaces $L^{p(x)}$”, J. Math. Inequal., 4:2 (2010), 285–299 | DOI | MR | Zbl

[11] Shakh-Emirov T. N., “Uniform boundedness of Steklov's operators families in weighted variable Lebesgue spaces”, Vestnik DNC RAN, 2014, no. 54, 12–17 (in Russian)

[12] Sobol I. M., Multidimensional Quadrature Formulas and Haar Functions, Nauka, M., 1969, 288 pp. (in Russian) | MR