Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2014_14_3_a7, author = {M. G. Magomed-Kasumov}, title = {Approximation of {Functions} by {Fourier--Haar} {Sums} in {Weighted} {Variable} {Lebesgue} and {Sobolev} {Spaces}}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {295--304}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a7/} }
TY - JOUR AU - M. G. Magomed-Kasumov TI - Approximation of Functions by Fourier--Haar Sums in Weighted Variable Lebesgue and Sobolev Spaces JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2014 SP - 295 EP - 304 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a7/ LA - ru ID - ISU_2014_14_3_a7 ER -
%0 Journal Article %A M. G. Magomed-Kasumov %T Approximation of Functions by Fourier--Haar Sums in Weighted Variable Lebesgue and Sobolev Spaces %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2014 %P 295-304 %V 14 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a7/ %G ru %F ISU_2014_14_3_a7
M. G. Magomed-Kasumov. Approximation of Functions by Fourier--Haar Sums in Weighted Variable Lebesgue and Sobolev Spaces. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 3, pp. 295-304. http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a7/
[1] Sharapudinov I. I., “Topology of the space $L^{p(t)}([0,1])$”, Mat. Zametki, 26:4 (1979), 613–632 | DOI | MR | Zbl
[2] Sharapudinov I. I., Some aspects of approximation theory in variable Lebesgue spaces, Vladikavkaz, 2012, 270 pp. (in Russian)
[3] Diening L., Harjulehto P., Hasto P., Ruzicka M., Lebesgue and Sobolev Spaces with Variable Exponents, Springer-Verlag, Berlin–Heidelberg, 2011, 509 pp. | DOI | MR | Zbl
[4] Cruz-Uribe D., Fiorenza A., Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Springer-Verlag, Berlin–Heidelberg, 2013, 312 pp. | DOI | MR | Zbl
[5] Sharapudinov I. I., “Approximation of function by Fourier–Haar sums in variable exponent Lebesgue and Sobolev spaces by Fourier–Haar sums”, Sb. Math., 205:2 (2014), 145–160 | DOI | MR
[6] Magomed-Kasumov M. G., “Basis property of the Haar system in the weighted variable Lebesgue spaces”, Poriadkovyi analiz i smezhnye voprosy matematicheskogo modelirovaniia, Tezisy dokladov mezhdunarodnoi nauchnoi konferentsii (Vladikavkaz, 14–20.07.2013), Vladikavkaz, 2013, 68–69 (in Russian)
[7] Magomed-Kasumov M. G., “Basis property of the Haar system in the weighted variable Lebesgue spaces”, Vladikavkaz Mathematical Journal, 16:3 (2014), 38–46 (in Russian)
[8] Kashin B. S., Saakyan A. A., Orthogonal series, Translations of Math. Monographs, 75, Amer. Math. Soc., Providence, RI, 1989 | MR | MR | Zbl | Zbl
[9] Sharapudinov I. I., “On the basis property of the Haar system in the space $L^{p}(t) ([0,1])$ and the principle of localization in the mean”, Math. of the USSR-Sbornik, 58:1 (1987), 279–287 | DOI | MR | MR | Zbl
[10] Guven A., Israfilov D. M., “Trigonometric approximation in generalized Lebesgue spaces $L^{p(x)}$”, J. Math. Inequal., 4:2 (2010), 285–299 | DOI | MR | Zbl
[11] Shakh-Emirov T. N., “Uniform boundedness of Steklov's operators families in weighted variable Lebesgue spaces”, Vestnik DNC RAN, 2014, no. 54, 12–17 (in Russian)
[12] Sobol I. M., Multidimensional Quadrature Formulas and Haar Functions, Nauka, M., 1969, 288 pp. (in Russian) | MR