Approximation of Functions by Fourier--Haar Sums in Weighted Variable Lebesgue and Sobolev Spaces
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 3, pp. 295-304

Voir la notice de l'article provenant de la source Math-Net.Ru

It is considered weighted variable Lebesgue $L^{p(x)}_w$ and Sobolev $W_{p(\cdot),w}$ spaces with conditions on exponent $p(x) \ge 1$ and weight $w(x)$ that provide Haar system to be a basis in $L^{p(x)}_w$. In such spaces there were obtained estimates of Fourier–Haar sums convergence speed. Estimates are given in terms of modulus of continuity $\Omega(f,\delta)_{p(\cdot),w}$, based on mean shift (Steklov's function).
@article{ISU_2014_14_3_a7,
     author = {M. G. Magomed-Kasumov},
     title = {Approximation of {Functions} by {Fourier--Haar} {Sums} in {Weighted} {Variable} {Lebesgue} and {Sobolev} {Spaces}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {295--304},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a7/}
}
TY  - JOUR
AU  - M. G. Magomed-Kasumov
TI  - Approximation of Functions by Fourier--Haar Sums in Weighted Variable Lebesgue and Sobolev Spaces
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 295
EP  - 304
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a7/
LA  - ru
ID  - ISU_2014_14_3_a7
ER  - 
%0 Journal Article
%A M. G. Magomed-Kasumov
%T Approximation of Functions by Fourier--Haar Sums in Weighted Variable Lebesgue and Sobolev Spaces
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 295-304
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a7/
%G ru
%F ISU_2014_14_3_a7
M. G. Magomed-Kasumov. Approximation of Functions by Fourier--Haar Sums in Weighted Variable Lebesgue and Sobolev Spaces. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 3, pp. 295-304. http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a7/