Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2014_14_3_a6, author = {T. V. Likhacheva}, title = {Approximation of {Functions} in {Symmetrical} and {Connected} {Holder} {Spaces} by {Linear} {Means} of {Fourier--Vilenkin} {Series}}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {287--294}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a6/} }
TY - JOUR AU - T. V. Likhacheva TI - Approximation of Functions in Symmetrical and Connected Holder Spaces by Linear Means of Fourier--Vilenkin Series JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2014 SP - 287 EP - 294 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a6/ LA - ru ID - ISU_2014_14_3_a6 ER -
%0 Journal Article %A T. V. Likhacheva %T Approximation of Functions in Symmetrical and Connected Holder Spaces by Linear Means of Fourier--Vilenkin Series %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2014 %P 287-294 %V 14 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a6/ %G ru %F ISU_2014_14_3_a6
T. V. Likhacheva. Approximation of Functions in Symmetrical and Connected Holder Spaces by Linear Means of Fourier--Vilenkin Series. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 3, pp. 287-294. http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a6/
[1] Golubov B., Efimov A., Skvortsov V., Walsh series and transforms, Kluwer Academic Publishers, Dodrecht–Boston–London, 1991, 368 pp. | MR | MR | Zbl | Zbl
[2] Krein S., Petunin J., Semenov E., Interpolation of linear operators, Translations Math. Monographs, 55, Amer. Math. Soc., Providence, R.I., 1992 | MR | Zbl
[3] Volosivets S. S., “On Hardy and Bellman transforms of series with respect to multiplicative systems in symmetric spaces”, Analysis Math., 35:2 (2009), 131–148 | DOI | MR | Zbl
[4] Mittal M. L., Rhoades B. E., Mishra V. N., Singh V., “Using infinite matrix to approximate functions of class $Lip(\alpha,p)$ using trigonometric polynomials”, J. Math. Anal. Appl., 326:1 (2007), 667–676 | DOI | MR | Zbl
[5] Guven A., “Trigonometric approximation in reflexive Orlicz spaces”, Anal. Theory Appl., 27:2 (2011), 125–137 | DOI | MR | Zbl
[6] Iofina T. V., Volosivets S. S., “On the degree of approximation by means of Fourier–Vilenkin series in Holder and $L^p$ norm”, East J. Approximations, 15:2 (2009), 143–158 | MR
[7] Leindler L., “On the degree of approximation of continuous functions”, Acta Math. Hungar., 104 (2004), 105–113 | DOI | MR | Zbl
[8] Bari N. K., Stechkin S. B., “Best approximations and differential properties of two conjugate functions”, Trudy Mosk. mat. obshchestva, 5, 1956, 488–522 (in Russian)
[9] Lindenstrauss J., Tzafriri L., Classical Banach spaces, v. II, Springer, Berlin, 1973, 243 pp. | MR | Zbl
[10] Schipp F., “On $L^p$-norm convergence of series with respect to product systems”, Anal. Math., 2 (1976), 49–64 | DOI | MR | Zbl
[11] Simon S., “Verallgemeinerte Walsch–Fourierreihen”, Acta Math. Hungar., 27:3–4 (1976), 329–341 | DOI | MR | Zbl
[12] Hardy G. H., Divergent Series, Oxford Univ. Press, New York, 1949, 395 pp. | MR | Zbl
[13] Zelin H., “The derivatives and integrals of fractional order in Walsh–Fourier analysis with application to approximation theory”, J. Approx. Theory, 39:3 (1983), 261–273 | MR
[14] Fridli S., “On the rate of convergence of Cesaro means of Walsh–Fourier series”, J. Approx. Theory, 76:1 (1994), 31–53 | DOI | MR | Zbl