@article{ISU_2014_14_3_a6,
author = {T. V. Likhacheva},
title = {Approximation of {Functions} in {Symmetrical} and {Connected} {Holder} {Spaces} by {Linear} {Means} of {Fourier{\textendash}Vilenkin} {Series}},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {287--294},
year = {2014},
volume = {14},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a6/}
}
TY - JOUR AU - T. V. Likhacheva TI - Approximation of Functions in Symmetrical and Connected Holder Spaces by Linear Means of Fourier–Vilenkin Series JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2014 SP - 287 EP - 294 VL - 14 IS - 3 UR - http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a6/ LA - ru ID - ISU_2014_14_3_a6 ER -
%0 Journal Article %A T. V. Likhacheva %T Approximation of Functions in Symmetrical and Connected Holder Spaces by Linear Means of Fourier–Vilenkin Series %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2014 %P 287-294 %V 14 %N 3 %U http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a6/ %G ru %F ISU_2014_14_3_a6
T. V. Likhacheva. Approximation of Functions in Symmetrical and Connected Holder Spaces by Linear Means of Fourier–Vilenkin Series. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 3, pp. 287-294. http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a6/
[1] Golubov B., Efimov A., Skvortsov V., Walsh series and transforms, Kluwer Academic Publishers, Dodrecht–Boston–London, 1991, 368 pp. | MR | MR | Zbl | Zbl
[2] Krein S., Petunin J., Semenov E., Interpolation of linear operators, Translations Math. Monographs, 55, Amer. Math. Soc., Providence, R.I., 1992 | MR | Zbl
[3] Volosivets S. S., “On Hardy and Bellman transforms of series with respect to multiplicative systems in symmetric spaces”, Analysis Math., 35:2 (2009), 131–148 | DOI | MR | Zbl
[4] Mittal M. L., Rhoades B. E., Mishra V. N., Singh V., “Using infinite matrix to approximate functions of class $Lip(\alpha,p)$ using trigonometric polynomials”, J. Math. Anal. Appl., 326:1 (2007), 667–676 | DOI | MR | Zbl
[5] Guven A., “Trigonometric approximation in reflexive Orlicz spaces”, Anal. Theory Appl., 27:2 (2011), 125–137 | DOI | MR | Zbl
[6] Iofina T. V., Volosivets S. S., “On the degree of approximation by means of Fourier–Vilenkin series in Holder and $L^p$ norm”, East J. Approximations, 15:2 (2009), 143–158 | MR
[7] Leindler L., “On the degree of approximation of continuous functions”, Acta Math. Hungar., 104 (2004), 105–113 | DOI | MR | Zbl
[8] Bari N. K., Stechkin S. B., “Best approximations and differential properties of two conjugate functions”, Trudy Mosk. mat. obshchestva, 5, 1956, 488–522 (in Russian)
[9] Lindenstrauss J., Tzafriri L., Classical Banach spaces, v. II, Springer, Berlin, 1973, 243 pp. | MR | Zbl
[10] Schipp F., “On $L^p$-norm convergence of series with respect to product systems”, Anal. Math., 2 (1976), 49–64 | DOI | MR | Zbl
[11] Simon S., “Verallgemeinerte Walsch–Fourierreihen”, Acta Math. Hungar., 27:3–4 (1976), 329–341 | DOI | MR | Zbl
[12] Hardy G. H., Divergent Series, Oxford Univ. Press, New York, 1949, 395 pp. | MR | Zbl
[13] Zelin H., “The derivatives and integrals of fractional order in Walsh–Fourier analysis with application to approximation theory”, J. Approx. Theory, 39:3 (1983), 261–273 | MR
[14] Fridli S., “On the rate of convergence of Cesaro means of Walsh–Fourier series”, J. Approx. Theory, 76:1 (1994), 31–53 | DOI | MR | Zbl