@article{ISU_2014_14_3_a4,
author = {L. S. Efremova},
title = {Numerical {Solution} of {Inverse} {Spectral} {Problems} for {Sturm{\textendash}Liouville} {Operators} with {Discontinuous} {Potentials}},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {273--279},
year = {2014},
volume = {14},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a4/}
}
TY - JOUR AU - L. S. Efremova TI - Numerical Solution of Inverse Spectral Problems for Sturm–Liouville Operators with Discontinuous Potentials JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2014 SP - 273 EP - 279 VL - 14 IS - 3 UR - http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a4/ LA - ru ID - ISU_2014_14_3_a4 ER -
%0 Journal Article %A L. S. Efremova %T Numerical Solution of Inverse Spectral Problems for Sturm–Liouville Operators with Discontinuous Potentials %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2014 %P 273-279 %V 14 %N 3 %U http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a4/ %G ru %F ISU_2014_14_3_a4
L. S. Efremova. Numerical Solution of Inverse Spectral Problems for Sturm–Liouville Operators with Discontinuous Potentials. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 3, pp. 273-279. http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a4/
[1] Levitan B. M., Inverse Sturm–Liouville Problems, VNU Sci. Press, Utrecht, 1987, 240 pp. | MR | MR | Zbl
[2] Marchenko V. A., Sturm–Liouville operators and applications, Birkhäuser, Basel, 1986, 367 pp. | MR | MR | Zbl
[3] Ignatiev M. Yu., Yurko V. A., “Numerical methods for solving inverse Sturm–Liouville problems”, Results in Math., 52 (2008), 63–74 | DOI | MR | Zbl
[4] Rafler M., Böckmann C., “Reconstruction method for inverse Sturm–Liouville problems with discontinuous potentials”, Inverse Problems, 23:3 (2007), 933–946 | DOI | MR | Zbl
[5] Rundell W., Sacks P. E., “Reconstruction techniques for classical inverse Sturm–Liouville problems”, Mathematics of Computation, 58:197 (1992), 161–183 | DOI | MR | Zbl
[6] Freiling G., Yurko V. A., Inverse Sturm–Liouville Problems and Their Applications, NOVA Science Publ., Huntington, N. Y., 2001, 305 pp. | MR | Zbl
[7] Oppenheim A. V., Schafer R. W., Discrete-time Signal Processing, Prentice-Hall, 1975, 585 pp. | Zbl
[8] Vinokurov V. A., Sadovnichii V. A., “Asymptotics of any order for the eigenvalues and eigenfunctions of the Sturm–Liouville boundary-value problem on a segment with a summable potential”, Izvestiya : Mathematics, 64:4 (2000), 695–754 | DOI | DOI | MR | Zbl