Numerical Solution of Inverse Spectral Problems for Sturm--Liouville Operators with Discontinuous Potentials
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 3, pp. 273-279.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider Sturm–Liouville differential operator with potential having a finite number of simple discontinuities. This paper is devoted to the numerical solution of such inverse spectral problems. The main result of this work is a procedure that is able to recover both the points of discontinuities as well as the heights of the jumps. Following, using these results, we may apply a suitable numerical method (for example, the generalized Rundell–Sacks algorithm with a special form of the reference potential) to reconstruct the potential more precisely.
@article{ISU_2014_14_3_a4,
     author = {L. S. Efremova},
     title = {Numerical {Solution} of {Inverse} {Spectral} {Problems} for {Sturm--Liouville} {Operators} with {Discontinuous} {Potentials}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {273--279},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a4/}
}
TY  - JOUR
AU  - L. S. Efremova
TI  - Numerical Solution of Inverse Spectral Problems for Sturm--Liouville Operators with Discontinuous Potentials
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 273
EP  - 279
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a4/
LA  - ru
ID  - ISU_2014_14_3_a4
ER  - 
%0 Journal Article
%A L. S. Efremova
%T Numerical Solution of Inverse Spectral Problems for Sturm--Liouville Operators with Discontinuous Potentials
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 273-279
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a4/
%G ru
%F ISU_2014_14_3_a4
L. S. Efremova. Numerical Solution of Inverse Spectral Problems for Sturm--Liouville Operators with Discontinuous Potentials. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 3, pp. 273-279. http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a4/

[1] Levitan B. M., Inverse Sturm–Liouville Problems, VNU Sci. Press, Utrecht, 1987, 240 pp. | MR | MR | Zbl

[2] Marchenko V. A., Sturm–Liouville operators and applications, Birkhäuser, Basel, 1986, 367 pp. | MR | MR | Zbl

[3] Ignatiev M. Yu., Yurko V. A., “Numerical methods for solving inverse Sturm–Liouville problems”, Results in Math., 52 (2008), 63–74 | DOI | MR | Zbl

[4] Rafler M., Böckmann C., “Reconstruction method for inverse Sturm–Liouville problems with discontinuous potentials”, Inverse Problems, 23:3 (2007), 933–946 | DOI | MR | Zbl

[5] Rundell W., Sacks P. E., “Reconstruction techniques for classical inverse Sturm–Liouville problems”, Mathematics of Computation, 58:197 (1992), 161–183 | DOI | MR | Zbl

[6] Freiling G., Yurko V. A., Inverse Sturm–Liouville Problems and Their Applications, NOVA Science Publ., Huntington, N. Y., 2001, 305 pp. | MR | Zbl

[7] Oppenheim A. V., Schafer R. W., Discrete-time Signal Processing, Prentice-Hall, 1975, 585 pp. | Zbl

[8] Vinokurov V. A., Sadovnichii V. A., “Asymptotics of any order for the eigenvalues and eigenfunctions of the Sturm–Liouville boundary-value problem on a segment with a summable potential”, Izvestiya : Mathematics, 64:4 (2000), 695–754 | DOI | DOI | MR | Zbl