On an Approach to Approximate Solving of the Problem for the Best Approximation for Compact Body by a Ball of Fixed Radius
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 3, pp. 267-272

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the problem of the best approximation of a compact body by a fixed radius ball with respect to an arbitrary norm in the Hausdorff metric. This problem is reduced to a linear programming problem in the case, when compact body and ball of the norm are polytops.
@article{ISU_2014_14_3_a3,
     author = {S. I. Dudov and M. A. Osipcev},
     title = {On an {Approach} to {Approximate} {Solving} of the {Problem} for the {Best} {Approximation} for {Compact} {Body} by a {Ball} of {Fixed} {Radius}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {267--272},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a3/}
}
TY  - JOUR
AU  - S. I. Dudov
AU  - M. A. Osipcev
TI  - On an Approach to Approximate Solving of the Problem for the Best Approximation for Compact Body by a Ball of Fixed Radius
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 267
EP  - 272
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a3/
LA  - ru
ID  - ISU_2014_14_3_a3
ER  - 
%0 Journal Article
%A S. I. Dudov
%A M. A. Osipcev
%T On an Approach to Approximate Solving of the Problem for the Best Approximation for Compact Body by a Ball of Fixed Radius
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 267-272
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a3/
%G ru
%F ISU_2014_14_3_a3
S. I. Dudov; M. A. Osipcev. On an Approach to Approximate Solving of the Problem for the Best Approximation for Compact Body by a Ball of Fixed Radius. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 3, pp. 267-272. http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a3/