Asymptotic Values of Analytic Functions Connected with a Prime End of~a~Domain
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 3, pp. 262-267.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1954 M. Heins proved that for any analytic set $A$, containing the infinity, there exists an entire function with asymptotic set $A.$ In the article we prove the following analog of Heins's theorem: for a multi-connected planar domain $D$ with an isolated boundary fragment, an analytic set $A$, $\infty\in A$, and a prime end of $D$ with impression $p$ there exists an analytic in $D$ function $f$ such that $A$ is the set of asymptotic values of $f$ connected with $p$.
@article{ISU_2014_14_3_a2,
     author = {E. G. Ganenkova},
     title = {Asymptotic {Values} of {Analytic} {Functions} {Connected} with a {Prime} {End} {of~a~Domain}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {262--267},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a2/}
}
TY  - JOUR
AU  - E. G. Ganenkova
TI  - Asymptotic Values of Analytic Functions Connected with a Prime End of~a~Domain
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 262
EP  - 267
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a2/
LA  - ru
ID  - ISU_2014_14_3_a2
ER  - 
%0 Journal Article
%A E. G. Ganenkova
%T Asymptotic Values of Analytic Functions Connected with a Prime End of~a~Domain
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 262-267
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a2/
%G ru
%F ISU_2014_14_3_a2
E. G. Ganenkova. Asymptotic Values of Analytic Functions Connected with a Prime End of~a~Domain. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 3, pp. 262-267. http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a2/

[1] Collingwood E. F., Lohwater A. J., The theory of cluster sets, Cambridge Univ. Press, Cambridge, UK, 1966, 213 pp. | MR | MR | Zbl

[2] I. M. Vinogradov (ed.), Encyclopedia of Mathematics, v. 1 : A–G, Sovetskaja Jenciklopedija, M., 1977, 576 pp. (in Russian) | MR

[3] Iversen F., Recherches sur les fonctions inverses des fonctions méromorphes, Imprimerie de la Société de littérature finnoise, Helsinki, 1914

[4] Goldberg A. A., Ostrovskii I. V., Value Distribution of Meromorphic Functions, Transl. Math. Mono., 236, Amer. Math. Soc., Providence, RI, 2008, 499 pp. | MR | MR | Zbl

[5] Mazurkiewicz S., “Sur les points singuliers d'une fonction analytique”, Fund. Math., 17:1 (1931), 26–29

[6] Hausdorff F., Set theory, Ob'edinennoe nauchno-tehnicheskoe izdatel'stvo NKTP USSR, M.–L., 1937, 305 pp. (in Russian)

[7] Sierpinski W., General topology, Univ. Toron-to Press, Toronto, 1952, 304 pp. | MR | Zbl

[8] Gross W., “Eine ganze Funktion, für die jede Komplexe Zahl Konvergenzwert ist”, Math. Ann., 79:1–2 (1918), 201–208 | DOI | MR | Zbl

[9] Heins M., “The set of asymptotic values of an entire function”, Proc. of the Scandinavian Math. Congress (Lund, 1953), 1954, 56–60 | MR | Zbl

[10] Ganenkova E. G., Starkov V. V., “Asymptotic values of functions, analytic in planar domains”, Issues of Analysis, 2(20):1 (2013), 38–42 | MR | Zbl

[11] Ganenkova E. G., Starkov V. V., “Analytic in planar domains functions with preassigned asymptotic set”, J. Appl. Anal., 20:1 (2014), 7–14 | DOI | MR | Zbl

[12] Liczberski P., Starkov V. V., “On locally biholomorhic mappings from multi-connected onto simply connected domains”, Ann. Polon. Math., 85:2 (2005), 135–143 | DOI | MR | Zbl

[13] Goluzin G. M., Geometric theory of functions of complex variables, Nauka, M., 1966, 628 pp. | MR

[14] Pommerenke Ch., Boundary behaviour of conformal maps, Springer-Verlag, Berlin–Heidelberg, 1992, 301 pp. | MR | Zbl

[15] Ahlfors L. V., “Untersuchungen zur Theorie der konformen Abbildung und der ganzen Funktionen”, Acta Soc. Sci. Fenn. Nova Series A, 1:9 (1930), 1–40 | Zbl

[16] Bagemihl F., “Curvilinear cluster sets of arbitrary functions”, Proc. Natl. Acad. Sci. USA, 41:6 (1955), 379–382 | DOI | MR | Zbl