About the Specifics of Identification Thermomechanical Characteristics of~Functionally Graded Materials
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 3, pp. 329-335.

Voir la notice de l'article provenant de la source Math-Net.Ru

Functionally graded materials are widely used in engineering fields with large thermo-mechanical loads. Efficiency of application of these materials depends on accurate knowledge of the laws of heterogeneity. Earlier, the authors have proposed an approach for the identification of smooth laws of heterogeneity for thermoelastic rod. To do this, were received operator equation linking activities and measurable functions for the solution of inverse problem and carried out computational experiments. In this paper, on the basis of the device, previously developed, were investigated features for restoring thermoelastic characteristics with a large gradient in the vicinity of the center and the end of the rod.
@article{ISU_2014_14_3_a12,
     author = {A. O. Vatulyan and S. A. Nesterov},
     title = {About the {Specifics} of {Identification} {Thermomechanical} {Characteristics} {of~Functionally} {Graded} {Materials}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {329--335},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a12/}
}
TY  - JOUR
AU  - A. O. Vatulyan
AU  - S. A. Nesterov
TI  - About the Specifics of Identification Thermomechanical Characteristics of~Functionally Graded Materials
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 329
EP  - 335
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a12/
LA  - ru
ID  - ISU_2014_14_3_a12
ER  - 
%0 Journal Article
%A A. O. Vatulyan
%A S. A. Nesterov
%T About the Specifics of Identification Thermomechanical Characteristics of~Functionally Graded Materials
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 329-335
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a12/
%G ru
%F ISU_2014_14_3_a12
A. O. Vatulyan; S. A. Nesterov. About the Specifics of Identification Thermomechanical Characteristics of~Functionally Graded Materials. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 3, pp. 329-335. http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a12/

[1] Wetherhold R. C., Seelman S., Wang J., “The use of functionally graded materials to eliminated or control thermal deformation”, Composites Science and Technology, 56 (1996), 1099–1104 | DOI

[2] Lee W. Y., Stinton D. P., Bernardt C. C., Erdogan F., Lee Y. D., Mutasin Z., “Concept of functionally graded materials for advanced thermal barier coatings applications”, J. of American Ceramic Society, 19 (1996), 3003–3012 | DOI

[3] Alifanov O. M., Artyuhin E. A., Rumyantsev S. V., Extreme methods for solving ill-posed problems, Nauka, M., 1988, 288 pp. (in Russian) | MR | Zbl

[4] Vatulyan A. O., Inverse problems in mechanics of deformable solids, Fizmatlit, M., 2007, 224 pp. (in Russian)

[5] Lomazov V. A., Problems of identification of inhomogeneous thermoelastic bodies, OrelSTU, Orel, 2002, 168 pp. (in Russian)

[6] Apbasov S. O., Yakhno V. G., “The inverse problem of dynamic unlinked thermoelasticity”, Some questions of the differential equations and discrete mathematics, Novosibirsk Univ. Press, Novosibirsk, 1986, 63–70 (in Russian)

[7] Lukasievicz S. A., Babaei R., Qian R. E., “Detection of material properties in a layered body by means of thermal effects”, J. of Thermal Stresses, 26:1 (2003), 13–23 | DOI

[8] Nedin R., Nesterov S., Vatulyan A., “On an inverse problem for inhomogeneous thermoelastic rod”, Intern. J. of Solids and Structures, 51:3 (2014), 767–773 | DOI

[9] Vatulyan A. O., Nesterov S. A., “About one method of identification of thermoelastic characteristics for inhomogeneous bodies”, Journal of Engineering Physics, 87:1 (2014), 217–224 (in Russian)

[10] Tikhonov A. N., Goncharsky A. V., Stepanov V. V., Yagola A. G., Numerical methods for solving ill-posed problems, Nauka, M., 1990, 230 pp. (in Russian) | MR