Synthesis in the Polynomial Kernel of Two Analytic Functionals
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 3, pp. 251-262

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\pi $ be an entire function of minimal type and order $\rho=1$ and let $\pi (D)$ be the corresponding differential operator. Maximal $\pi (D)$-invariant subspace of the kernel of an analytic functional is called its $\mathbf{C}[\pi ]$-kernel. $\mathbf{C}[\pi ]$-kernel of a system of analytic functionals is called the intersection of their $\mathbf{C}[\pi ]$-kernels. The paper describes the conditions which allow synthesis of $\mathbf{C}[\pi ]$-kernels of two analytical functionals with respect to the root elements of the differential operator $\pi (D)$.
@article{ISU_2014_14_3_a1,
     author = {T. A. Volkovaya},
     title = {Synthesis in the {Polynomial} {Kernel} of {Two} {Analytic} {Functionals}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {251--262},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a1/}
}
TY  - JOUR
AU  - T. A. Volkovaya
TI  - Synthesis in the Polynomial Kernel of Two Analytic Functionals
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 251
EP  - 262
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a1/
LA  - ru
ID  - ISU_2014_14_3_a1
ER  - 
%0 Journal Article
%A T. A. Volkovaya
%T Synthesis in the Polynomial Kernel of Two Analytic Functionals
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 251-262
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a1/
%G ru
%F ISU_2014_14_3_a1
T. A. Volkovaya. Synthesis in the Polynomial Kernel of Two Analytic Functionals. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 3, pp. 251-262. http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a1/