Synthesis in the Polynomial Kernel of Two Analytic Functionals
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 3, pp. 251-262.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\pi $ be an entire function of minimal type and order $\rho=1$ and let $\pi (D)$ be the corresponding differential operator. Maximal $\pi (D)$-invariant subspace of the kernel of an analytic functional is called its $\mathbf{C}[\pi ]$-kernel. $\mathbf{C}[\pi ]$-kernel of a system of analytic functionals is called the intersection of their $\mathbf{C}[\pi ]$-kernels. The paper describes the conditions which allow synthesis of $\mathbf{C}[\pi ]$-kernels of two analytical functionals with respect to the root elements of the differential operator $\pi (D)$.
@article{ISU_2014_14_3_a1,
     author = {T. A. Volkovaya},
     title = {Synthesis in the {Polynomial} {Kernel} of {Two} {Analytic} {Functionals}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {251--262},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a1/}
}
TY  - JOUR
AU  - T. A. Volkovaya
TI  - Synthesis in the Polynomial Kernel of Two Analytic Functionals
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 251
EP  - 262
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a1/
LA  - ru
ID  - ISU_2014_14_3_a1
ER  - 
%0 Journal Article
%A T. A. Volkovaya
%T Synthesis in the Polynomial Kernel of Two Analytic Functionals
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 251-262
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a1/
%G ru
%F ISU_2014_14_3_a1
T. A. Volkovaya. Synthesis in the Polynomial Kernel of Two Analytic Functionals. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 3, pp. 251-262. http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a1/

[1] Krasichkov-Ternovskii I. F., “Invariant subspaces of analytic functions. II: Spectral synthesis of convex domains”, Mathematics of the USSR-Sbornik, 88:1 (1972), 3–30

[2] Shishkin A. B., “Spectral synthesis for systems of differential operators with constant coefficients. Duality theorem”, Mathematics of the USSR-Sbornik, 189:9 (1998), 1423–1440 | DOI | DOI | MR | Zbl

[3] Chernyshev A. N., “Spectral synthesis for infinitely differential operator with constant coefficients. Duality theorem”, Trudi FORA, 6 (2001), 75–87 (in Russian)

[4] Volkovaya T. A., Shishkin A. B., “Local description of entire functions”, Mathematical forum. Sequence analysis and related problems of mathematical modeling, 8, UMI VSC RAS and RSO-A, Vladikavkaz, 2014, 218–230 (in Russian)

[5] Volkovaya T. A., Shishkin A. B., “Local description of entire functions. Submodules of rank 1”, Vladikavkaz. Math. Journal, 16:2 (2014), 14–28 (in Russian)

[6] Krasichkov-Ternovskii I. F., “Invariant subspaces of analytic functions. III: On the extension of spectral synthesis”, Mathematics of the USSR-Sbornik, 88:3 (1972), 331–352

[7] Merzlyakov S. G., “Invariant subspaces of the operator of multiple differentiation”, Math. Notes, 33:5 (1983), 701–713 | MR | Zbl

[8] Krasichkov-Ternovskii I. F., “Spectral synthesis in a complex domain for a differential operator with constant coefficients. I: A duality theorem”, Mathematics of the USSR-Sbornik, 182:11 (1991), 1559–1587

[9] Pismenny R. G., Principal submodules and invariant subspaces analytic functions, Dr. phys. and math. sci. diss., Slavyansk-on-Kuban, 2010, 104 pp.

[10] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956, 632 pp.; Levin B. Ja., Distribution of Zeros of Entire Functions, Translations of Math. Monographs, 5, Amer. Math. Soc., Providence, RI, 1964 ; revised ed., 1980 | MR

[11] Abuzyarova N. F., “A property of subspaces admitting spectral synthesis”, Mathematics of the USSR-Sbornik, 190:4 (1999), 3–22 | DOI | MR