Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2014_14_2_a9, author = {S. A. Lychev and A. V. Mark}, title = {Axisymmetric growth of a~hollow hyperelastic cylinder}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {209--227}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_2_a9/} }
TY - JOUR AU - S. A. Lychev AU - A. V. Mark TI - Axisymmetric growth of a~hollow hyperelastic cylinder JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2014 SP - 209 EP - 227 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2014_14_2_a9/ LA - ru ID - ISU_2014_14_2_a9 ER -
S. A. Lychev; A. V. Mark. Axisymmetric growth of a~hollow hyperelastic cylinder. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 2, pp. 209-227. http://geodesic.mathdoc.fr/item/ISU_2014_14_2_a9/
[1] Gibson I., Rosen D. W., Stucker B., Additive Manufacturing Technologies. Rapid Prototyping to Direct Digital Manufacturing, Springer, 2009, 459 pp.
[2] Choy K. L., “Chemical vapour deposition of coatings”, Progress in Materials Science, 48 (2003), 57–170 | DOI
[3] Nastasi M., Mayer J. W., Ion Implantation and Synthesis of Materials, Springer, 2006, 263 pp.
[4] Lychev S. A., Manzhirov A. V., “The mathematical theory of growing bodies. Finite deformations”, J. Appl. Math. Mech., 77:4 (2013), 421–432 | DOI
[5] Lychev S. A., Manzhirov A. V., “Reference Configurations of Growing Bodies”, Mech. Solids, 48:5 (2013), 553–560 | DOI
[6] Lychev S. A., “Universal Deformations of Growing Solids”, Mech. Solids, 46:6 (2011), 863–876 | DOI
[7] Arutiunian N. Kh., Drozdov A. D., Naumov V. E., Mechanics of viscous, elastic, plastic bodies, Nauka, Moscow, 1987, 412 pp.
[8] Lurie A. I., Nonlinear theory of elasticity, North-Holland, Amsterdam, 1990, 617 pp. | MR | MR | Zbl
[9] Klarbring A., Olsson T., Stalhand J., “Theory of residual stresses with application to an arterial geometry”, Archives of Mechanics, 59 (2001), 341–364 | MR
[10] Epstein M., Maugin G. A., “Thermomechanics of volumetric growth in uniform bodies”, Intern. J. Plasticity, 16:7 (2000), 951–978 | DOI | Zbl
[11] Yavari A., “A geometric theory of growth mechanics”, J. Nonlinear Sci., 20:6 (2010), 781–830 | DOI | MR | Zbl
[12] Manzhirov A. V., Lychev S. A., “The mathematical theory of growing solids: Finite deformations”, Doklady Physics, 57:4 (2012), 160–163 | DOI | MR
[13] Noll W., “Materially uniform simple bodies with inhomogeneities”, Arch. Rat. Mech. Anal., 27:1 (1967), 1–32 | DOI | MR
[14] Wang C.-C., “On the geometric structures of simple bodies, a mathematical foundation for the theory of continuous distributions of dislocations”, Arch. Rat. Mech. Anal., 27:1 (1967), 33–94 | DOI | MR | Zbl
[15] Epstein M., The Geometrical Language of Continuum Mechanics, Cambridge Univ. Press, 2010, 312 pp. | MR | Zbl
[16] Maugin G. A., Material Inhomogeneities in Elasticity, Chapman and Hall, L., 1993, 294 pp. | MR | Zbl
[17] Marsden J. E., Hughes T. J. R., Mathematical Foundations of Elasticity, Dover Publ., N.Y., 1994, 556 pp. | MR
[18] Postnikov M. M., Smooth manifolds, Nauka, Moscow, 1987, 478 pp. | MR | Zbl
[19] Choquet-Bruhat Y., Dewitt-Morette C., Dillard-Bleick M., Analysis, Manifolds and Physics. Pt. 1. Basics, in 2 pt., Elsevier, Amsterdam, 1982, 660 pp. | MR
[20] Truesdell C., Noll W., The Non-Linear Field Theories of Mechanics, Springer, 2004, 602 pp. | MR | Zbl
[21] Manzhirov A. V., Lychev S. A., “Residual Stresses in Growing Bodies”, Topical Problems in Solid and Fluid Mechanics, Elite Publ. House, Delhi, 2011, 66–79
[22] Gurtin M. E., Murdoch A. I., “A Continuum Theory of Elastic Material Surfaces”, Arch. Rat. Mech. Anal., 27 (1975), 291–323 | MR
[23] Fihtengolts G. M., A course of differential and integral calculus, in 3 vol., v. 2, Fizmatlit, Moscow, 2001, 810 pp.
[24] Eshelbi Dzh., Kontinualnaya teoriya dislokatsii, Izd-vo inostr. lit., M., 1963, 247 pp.; Eshelby J. D., “The continuum theory of lattice defects”, Solid State Physics, 3 (1956), 79–144; Eshelby J. D., “The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems”, Proc. Roy. Soc., ser. A, 241:1226 (1957), 376–396 ; Eshelby J. D., “The elastic field outside an ellipsoidal inclusion”, Proc. Roy. Soc., ser. A, 252:1271 (1959), 561–569 ; Eshelby J. D., Frank F. C., Nabarro F. R. N., “The equilibrium of linear arrays of dislocations”, Phil. Mag., 42:327 (1951), 351–364 | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl
[25] Polyanin A. D., Manzhirov A. V., Handbook of Integral Equations, Chapman and Hall/CRC Press, Boca Raton–London, 2008, 1544 pp. | MR | Zbl
[26] Hartman S., “Numerical studies on the identification of the material parameters of Rivlin's hyperelasticity using tension-torsion tests”, Acta Mechanica, 148 (2001), 129–155 | DOI | Zbl