Axisymmetric growth of a~hollow hyperelastic cylinder
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 2, pp. 209-227.

Voir la notice de l'article provenant de la source Math-Net.Ru

The finite deformations of the growing cylinder fabricated of an incompressible elastic material of Mooney–Rivlin type are under consideration. We assume that the deformations are axisymmetric and constant along the cylinder axis. The discrete and continuous types of growing are studied. The analytical solutions of the corresponding boundary-value problems are derived. The computational examples show the convergence of solutions obtained for the discrete growth to corresponding solutions for continuous growth under the following conditions: the number of discrete plies increases while their thickness decreases such that the final volume of growing solid is fixed.
@article{ISU_2014_14_2_a9,
     author = {S. A. Lychev and A. V. Mark},
     title = {Axisymmetric growth of a~hollow hyperelastic cylinder},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {209--227},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_2_a9/}
}
TY  - JOUR
AU  - S. A. Lychev
AU  - A. V. Mark
TI  - Axisymmetric growth of a~hollow hyperelastic cylinder
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 209
EP  - 227
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_2_a9/
LA  - ru
ID  - ISU_2014_14_2_a9
ER  - 
%0 Journal Article
%A S. A. Lychev
%A A. V. Mark
%T Axisymmetric growth of a~hollow hyperelastic cylinder
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 209-227
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_2_a9/
%G ru
%F ISU_2014_14_2_a9
S. A. Lychev; A. V. Mark. Axisymmetric growth of a~hollow hyperelastic cylinder. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 2, pp. 209-227. http://geodesic.mathdoc.fr/item/ISU_2014_14_2_a9/

[1] Gibson I., Rosen D. W., Stucker B., Additive Manufacturing Technologies. Rapid Prototyping to Direct Digital Manufacturing, Springer, 2009, 459 pp.

[2] Choy K. L., “Chemical vapour deposition of coatings”, Progress in Materials Science, 48 (2003), 57–170 | DOI

[3] Nastasi M., Mayer J. W., Ion Implantation and Synthesis of Materials, Springer, 2006, 263 pp.

[4] Lychev S. A., Manzhirov A. V., “The mathematical theory of growing bodies. Finite deformations”, J. Appl. Math. Mech., 77:4 (2013), 421–432 | DOI

[5] Lychev S. A., Manzhirov A. V., “Reference Configurations of Growing Bodies”, Mech. Solids, 48:5 (2013), 553–560 | DOI

[6] Lychev S. A., “Universal Deformations of Growing Solids”, Mech. Solids, 46:6 (2011), 863–876 | DOI

[7] Arutiunian N. Kh., Drozdov A. D., Naumov V. E., Mechanics of viscous, elastic, plastic bodies, Nauka, Moscow, 1987, 412 pp.

[8] Lurie A. I., Nonlinear theory of elasticity, North-Holland, Amsterdam, 1990, 617 pp. | MR | MR | Zbl

[9] Klarbring A., Olsson T., Stalhand J., “Theory of residual stresses with application to an arterial geometry”, Archives of Mechanics, 59 (2001), 341–364 | MR

[10] Epstein M., Maugin G. A., “Thermomechanics of volumetric growth in uniform bodies”, Intern. J. Plasticity, 16:7 (2000), 951–978 | DOI | Zbl

[11] Yavari A., “A geometric theory of growth mechanics”, J. Nonlinear Sci., 20:6 (2010), 781–830 | DOI | MR | Zbl

[12] Manzhirov A. V., Lychev S. A., “The mathematical theory of growing solids: Finite deformations”, Doklady Physics, 57:4 (2012), 160–163 | DOI | MR

[13] Noll W., “Materially uniform simple bodies with inhomogeneities”, Arch. Rat. Mech. Anal., 27:1 (1967), 1–32 | DOI | MR

[14] Wang C.-C., “On the geometric structures of simple bodies, a mathematical foundation for the theory of continuous distributions of dislocations”, Arch. Rat. Mech. Anal., 27:1 (1967), 33–94 | DOI | MR | Zbl

[15] Epstein M., The Geometrical Language of Continuum Mechanics, Cambridge Univ. Press, 2010, 312 pp. | MR | Zbl

[16] Maugin G. A., Material Inhomogeneities in Elasticity, Chapman and Hall, L., 1993, 294 pp. | MR | Zbl

[17] Marsden J. E., Hughes T. J. R., Mathematical Foundations of Elasticity, Dover Publ., N.Y., 1994, 556 pp. | MR

[18] Postnikov M. M., Smooth manifolds, Nauka, Moscow, 1987, 478 pp. | MR | Zbl

[19] Choquet-Bruhat Y., Dewitt-Morette C., Dillard-Bleick M., Analysis, Manifolds and Physics. Pt. 1. Basics, in 2 pt., Elsevier, Amsterdam, 1982, 660 pp. | MR

[20] Truesdell C., Noll W., The Non-Linear Field Theories of Mechanics, Springer, 2004, 602 pp. | MR | Zbl

[21] Manzhirov A. V., Lychev S. A., “Residual Stresses in Growing Bodies”, Topical Problems in Solid and Fluid Mechanics, Elite Publ. House, Delhi, 2011, 66–79

[22] Gurtin M. E., Murdoch A. I., “A Continuum Theory of Elastic Material Surfaces”, Arch. Rat. Mech. Anal., 27 (1975), 291–323 | MR

[23] Fihtengolts G. M., A course of differential and integral calculus, in 3 vol., v. 2, Fizmatlit, Moscow, 2001, 810 pp.

[24] Eshelbi Dzh., Kontinualnaya teoriya dislokatsii, Izd-vo inostr. lit., M., 1963, 247 pp.; Eshelby J. D., “The continuum theory of lattice defects”, Solid State Physics, 3 (1956), 79–144; Eshelby J. D., “The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems”, Proc. Roy. Soc., ser. A, 241:1226 (1957), 376–396 ; Eshelby J. D., “The elastic field outside an ellipsoidal inclusion”, Proc. Roy. Soc., ser. A, 252:1271 (1959), 561–569 ; Eshelby J. D., Frank F. C., Nabarro F. R. N., “The equilibrium of linear arrays of dislocations”, Phil. Mag., 42:327 (1951), 351–364 | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl

[25] Polyanin A. D., Manzhirov A. V., Handbook of Integral Equations, Chapman and Hall/CRC Press, Boca Raton–London, 2008, 1544 pp. | MR | Zbl

[26] Hartman S., “Numerical studies on the identification of the material parameters of Rivlin's hyperelasticity using tension-torsion tests”, Acta Mechanica, 148 (2001), 129–155 | DOI | Zbl