On a~form of the first variation of the action integral over a~varied domain
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 2, pp. 199-209.

Voir la notice de l'article provenant de la source Math-Net.Ru

Field theories of the continuum mechanics and physics based on the least action principle are considered in a unified framework. Variation of the action integral in the least action principle corresponds variations of physical fields while space-time coordinates are not varied. However notion of the action invariance, theory of variational symmetries of action and conservation laws require a wider variation procedure including variations of the space-time coordinates. A similar situation is concerned to variational problems with strong discontinuities of field variables or other a priori unknown free boundaries which variations are not prohibited from the beginning. A form of the first variation of the action integral corresponding variations of space-time coordinates and field variables under one-parametrical transformations groups is obtained. This form is attributed to $4$-dimensional covariant formulations of field theories of the continuum mechanics and physics. The first variation of the action integral over a varied domain is given for problems with constraints. The latter are formulated on unknown free boundaries.
@article{ISU_2014_14_2_a8,
     author = {V. A. Kovalev and Yu. N. Radayev},
     title = {On a~form of the first variation of the action integral over a~varied domain},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {199--209},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_2_a8/}
}
TY  - JOUR
AU  - V. A. Kovalev
AU  - Yu. N. Radayev
TI  - On a~form of the first variation of the action integral over a~varied domain
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 199
EP  - 209
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_2_a8/
LA  - ru
ID  - ISU_2014_14_2_a8
ER  - 
%0 Journal Article
%A V. A. Kovalev
%A Yu. N. Radayev
%T On a~form of the first variation of the action integral over a~varied domain
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 199-209
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_2_a8/
%G ru
%F ISU_2014_14_2_a8
V. A. Kovalev; Yu. N. Radayev. On a~form of the first variation of the action integral over a~varied domain. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 2, pp. 199-209. http://geodesic.mathdoc.fr/item/ISU_2014_14_2_a8/

[1] Kovalev V. A., Radayev Yu. N., Elements of the Field Theory : Variational Symmetries and Geometric Invariants, Fizmatlit, Moscow, 2009, 156 pp.

[2] Kovalev V. A., Radayev Yu. N., Wave Problems of Field Theory and Thermomechanics, Saratov Univ. Press, Saratov, 2010, 328 pp.

[3] Ovsyannikov L. V., Group Analysis of Differential Equations, Nauka, Moscow, 1978, 400 pp. | MR | Zbl

[4] Olver P. J., Applications of Lie Groups to Differential Equations, Mir, Moscow, 1989, 639 pp. | MR | Zbl

[5] Olver P. J., Equivalence, Invariants and Symmetry, Cambridge University Press, Cambridge–N.Y.–Melbourne, 1995, 526 pp. | MR | Zbl

[6] Noether E., “Invariante Variationsprobleme”, Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse, 1918, no. 2, 235–257 ; Neter E., “Invariantnye variatsionnye zadachi”, Variatsionnye printsipy mekhaniki, Fizmatgiz, M., 1959, 611–630 | Zbl

[7] Courant R., Gilbert D., Methods of Mathematical Physics, in 2 vol., v. 1, Gostekhteoretizdat, Moscow–Leningrad, 1933, 528 pp.

[8] Gelfand I. M., Fomin S. V., Calculus of Variations, Fizmatgiz, Moscow, 1961, 228 pp. | MR

[9] Gunter N. M., A Cours of the Calculus of Variations, Gostekhteoretizdat, Moscow–Leningrad, 1941, 308 pp.