Classical solution by the Fourier method of mixed problems with minimum requirements on the initial data
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 2, pp. 171-198

Voir la notice de l'article provenant de la source Math-Net.Ru

The article gives a new short proof the V. A. Chernyatin theorem about the classical solution of the Fourier method of the mixed problem for the wave equation with fixed ends with minimum requirements on the initial data. Next, a similar problem for the simplest functional differential equation of the first order with involution in the case of the fixed end is considered, and also obtained definitive results. These results are due to a significant use of ideas A. N. Krylova to accelerate the convergence of series, like Fourier series. The results for other similar mixed problems given without proof.
@article{ISU_2014_14_2_a7,
     author = {A. P. Khromov and M. Sh. Burlutskaya},
     title = {Classical solution by the {Fourier} method of mixed problems with minimum requirements on the initial data},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {171--198},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_2_a7/}
}
TY  - JOUR
AU  - A. P. Khromov
AU  - M. Sh. Burlutskaya
TI  - Classical solution by the Fourier method of mixed problems with minimum requirements on the initial data
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 171
EP  - 198
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_2_a7/
LA  - ru
ID  - ISU_2014_14_2_a7
ER  - 
%0 Journal Article
%A A. P. Khromov
%A M. Sh. Burlutskaya
%T Classical solution by the Fourier method of mixed problems with minimum requirements on the initial data
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 171-198
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_2_a7/
%G ru
%F ISU_2014_14_2_a7
A. P. Khromov; M. Sh. Burlutskaya. Classical solution by the Fourier method of mixed problems with minimum requirements on the initial data. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 2, pp. 171-198. http://geodesic.mathdoc.fr/item/ISU_2014_14_2_a7/