On Poisson customary polynomial identities
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 2, pp. 150-155.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study Poisson customary and Poisson extended customary polynomials. We show that the sequence of codimensions $\{r_n(V)\}_{n\geq1}$ of every extended customary space of variety $V$ of Poisson algebras over an arbitrary field is either bounded by a polynomial or at least exponential. Furthermore, if this sequence is bounded by polynomial then there is a polynomial $R(x)$ with rational coefficients such that $r_n(V)=R(n)$ for all sufficiently large $n$. We present lower and upper bounds for the polynomials $R(x)$ of an arbitrary fixed degree.
@article{ISU_2014_14_2_a4,
     author = {S. M. Ratseev},
     title = {On {Poisson} customary polynomial identities},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {150--155},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_2_a4/}
}
TY  - JOUR
AU  - S. M. Ratseev
TI  - On Poisson customary polynomial identities
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 150
EP  - 155
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_2_a4/
LA  - ru
ID  - ISU_2014_14_2_a4
ER  - 
%0 Journal Article
%A S. M. Ratseev
%T On Poisson customary polynomial identities
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 150-155
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_2_a4/
%G ru
%F ISU_2014_14_2_a4
S. M. Ratseev. On Poisson customary polynomial identities. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 2, pp. 150-155. http://geodesic.mathdoc.fr/item/ISU_2014_14_2_a4/

[1] Farkas D. R., “Poisson polynomial identities”, Comm. Algebra, 26:2 (1998), 401–416 | DOI | MR | Zbl

[2] Farkas D. R., “Poisson polynomial identities. II”, Arch. Math. (Basel), 72:4 (1999), 252–260 | DOI | MR | Zbl

[3] Bahturin Yu. A., Identical relations in Lie algebras, VNU Sci. Press, Utrecht, 1987, 309 pp. | MR | MR | Zbl

[4] Giambruno A., Zaicev M. V., Polynomial Identities and Asymptotic Methods, Math. Surv. and Monographs, 122, American Math. Soc., Providence, R.I., 2005 | DOI | MR | Zbl

[5] Ratseev S. M., “Poisson algebras of polynomial growth”, Siberian Math. J., 54:3 (2013), 555–565 | DOI | MR | Zbl

[6] Mishchenko S. P., Petrogradsky V. M., Regev A., “Poisson PI algebras”, Trans. Amer. Math. Soc., 359:10 (2007), 4669–4694 | DOI | MR | Zbl

[7] Cherevatenko O. I., “On nilpotent Leibnitz algebras”, Belgorod State University Scientific Bulletin. Ser. Mathematics. Physics, 2012, no. 23(142), iss. 29, 14–16