Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2014_14_2_a3, author = {M. G. Pleshakov and S. V. Tyshkevich}, title = {One counterexample of shape-preserving approximation}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {144--150}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_2_a3/} }
TY - JOUR AU - M. G. Pleshakov AU - S. V. Tyshkevich TI - One counterexample of shape-preserving approximation JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2014 SP - 144 EP - 150 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2014_14_2_a3/ LA - ru ID - ISU_2014_14_2_a3 ER -
%0 Journal Article %A M. G. Pleshakov %A S. V. Tyshkevich %T One counterexample of shape-preserving approximation %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2014 %P 144-150 %V 14 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2014_14_2_a3/ %G ru %F ISU_2014_14_2_a3
M. G. Pleshakov; S. V. Tyshkevich. One counterexample of shape-preserving approximation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 2, pp. 144-150. http://geodesic.mathdoc.fr/item/ISU_2014_14_2_a3/
[1] Jackson D., “On approximation by trigonometric sums and polynomials”, Trans. Amer. Math. Soc., 13 (1912), 491–515 | DOI | MR | Zbl
[2] Zygmund A., “Smooth Functions”, Duke Math. J., 12:1 (1945), 47–76 | DOI | MR | Zbl
[3] Stechkin S. B., “On the best approximation of periodic functions by trigonometric polynomials”, Dokl. Akad. Nauk SSSR, 83:5 (1952), 651–654 | Zbl
[4] Kopotun K. A., “Uniform estimates of the coconvex approximation of functions by polynomials”, Math. Notes, 51:3 (1992), 245–254 | DOI | MR | Zbl
[5] Timan A. F., “The strengthening of the theorem of Jackson on the best approximation of continuous functions on a finite interval of the real axis”, Dokl. Akad. Nauk SSSR, 78:1 (1951), 17–20 | MR | Zbl
[6] Dzyadyk V. K., “On the approximation of functions by ordinary polynomials on a finite interval of the real axis”, Izvestiia AN SSSR. Ser. matematicheskaia, 22:3 (1958), 337–354 | MR | Zbl
[7] Freud G., “Uber die Approximation Reelen Stetiger Functionen Durch Gewohnliche Polinome”, Math. Ann., 137:1 (1959), 17–25 | DOI | MR | Zbl
[8] Teljakovskii S. A., “Two theorems on approximation of functions by algebraic polynomials”, Mat. Sb. (N.S.), 70(112):2 (1966), 252–265 | MR | Zbl
[9] Brudnyi Yu. A., “The approximation of functions by algebraic polynomials”, Mathematics of the USSR-Izvestiya, 2:4 (1968), 735–743 | DOI | MR | Zbl | Zbl
[10] Lorentz G. G., Zeller K. L., “Degree of Approximation by Monotone Polynomials. II”, J. Approx. Theory, 2:3 (1969), 265–269 | DOI | MR | Zbl
[11] Shevchuk I. A., Approximation by polynomials and traces continuous on the interval functions, Naukova dumka, Kiev, 1992, 225 pp. (in Russian)
[12] Shvedov A. S., “Jackson's theorem in $L^p$, $0
1$, for algebraic polynomials, and orders of comonotone approximations”, Math. Notes, 25:1 (1979), 57–63 | DOI | MR | Zbl | Zbl[13] Shvedov A. S., “Comonotone approximation of functions by polynomials”, Dokl. Akad. Nauk SSSR, 250:1 (1980), 39–42 | MR
[14] Dzyadyk V. K., Introduction to the theory of uniform approximation of functions by polynomials, Nauka, Moscow, 1977, 512 pp. (in Russian) | MR | Zbl