One counterexample of shape-preserving approximation
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 2, pp. 144-150

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $2s$ points $y_i=-\pi\le y_{2s}\ldots$ be given. Using these points, we define the points $y_i$ for all integer indices $i$ by the equality $y_i=y_{i+2s}+2\pi$. We shall write $f\in\Delta^{(1)}(Y)$ if $f$ is a $2\pi$-periodic function and $f$ does not decrease on $[y_i,~y_{i-1}]$ if $i$ is odd; and $f$ does not increase on $[y_i,y_{i-1}]$ if $i$ is even. We denote $E_n^{(1)}(f;Y)$ the value of the best uniform comonotone approximation. In this article the following counterexample of comonotone approximation is proved. Example. For each $k\in\mathbb N$, $k>2$, and $n\in\mathbb N$ there a function $f(x):=f(x;s,Y,n,k)$ exists, such that $f\in\Delta^{(1)}(Y)$ and $$ E_n^{(1)}(f;Y)>B_Yn^{\frac k2-1}\omega_k\left(f;\frac1n\right), $$ where $B_Y=\mathrm{cons}$t, depending only on $Y$ and $k$; $\omega_k$ is the modulus of smoothness of order $k$, of $f$.
@article{ISU_2014_14_2_a3,
     author = {M. G. Pleshakov and S. V. Tyshkevich},
     title = {One counterexample of shape-preserving approximation},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {144--150},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_2_a3/}
}
TY  - JOUR
AU  - M. G. Pleshakov
AU  - S. V. Tyshkevich
TI  - One counterexample of shape-preserving approximation
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 144
EP  - 150
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_2_a3/
LA  - ru
ID  - ISU_2014_14_2_a3
ER  - 
%0 Journal Article
%A M. G. Pleshakov
%A S. V. Tyshkevich
%T One counterexample of shape-preserving approximation
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 144-150
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_2_a3/
%G ru
%F ISU_2014_14_2_a3
M. G. Pleshakov; S. V. Tyshkevich. One counterexample of shape-preserving approximation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 2, pp. 144-150. http://geodesic.mathdoc.fr/item/ISU_2014_14_2_a3/