One counterexample of shape-preserving approximation
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 2, pp. 144-150.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $2s$ points $y_i=-\pi\le y_{2s}\ldots$ be given. Using these points, we define the points $y_i$ for all integer indices $i$ by the equality $y_i=y_{i+2s}+2\pi$. We shall write $f\in\Delta^{(1)}(Y)$ if $f$ is a $2\pi$-periodic function and $f$ does not decrease on $[y_i,~y_{i-1}]$ if $i$ is odd; and $f$ does not increase on $[y_i,y_{i-1}]$ if $i$ is even. We denote $E_n^{(1)}(f;Y)$ the value of the best uniform comonotone approximation. In this article the following counterexample of comonotone approximation is proved. Example. For each $k\in\mathbb N$, $k>2$, and $n\in\mathbb N$ there a function $f(x):=f(x;s,Y,n,k)$ exists, such that $f\in\Delta^{(1)}(Y)$ and $$ E_n^{(1)}(f;Y)>B_Yn^{\frac k2-1}\omega_k\left(f;\frac1n\right), $$ where $B_Y=\mathrm{cons}$t, depending only on $Y$ and $k$; $\omega_k$ is the modulus of smoothness of order $k$, of $f$.
@article{ISU_2014_14_2_a3,
     author = {M. G. Pleshakov and S. V. Tyshkevich},
     title = {One counterexample of shape-preserving approximation},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {144--150},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_2_a3/}
}
TY  - JOUR
AU  - M. G. Pleshakov
AU  - S. V. Tyshkevich
TI  - One counterexample of shape-preserving approximation
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 144
EP  - 150
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_2_a3/
LA  - ru
ID  - ISU_2014_14_2_a3
ER  - 
%0 Journal Article
%A M. G. Pleshakov
%A S. V. Tyshkevich
%T One counterexample of shape-preserving approximation
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 144-150
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_2_a3/
%G ru
%F ISU_2014_14_2_a3
M. G. Pleshakov; S. V. Tyshkevich. One counterexample of shape-preserving approximation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 2, pp. 144-150. http://geodesic.mathdoc.fr/item/ISU_2014_14_2_a3/

[1] Jackson D., “On approximation by trigonometric sums and polynomials”, Trans. Amer. Math. Soc., 13 (1912), 491–515 | DOI | MR | Zbl

[2] Zygmund A., “Smooth Functions”, Duke Math. J., 12:1 (1945), 47–76 | DOI | MR | Zbl

[3] Stechkin S. B., “On the best approximation of periodic functions by trigonometric polynomials”, Dokl. Akad. Nauk SSSR, 83:5 (1952), 651–654 | Zbl

[4] Kopotun K. A., “Uniform estimates of the coconvex approximation of functions by polynomials”, Math. Notes, 51:3 (1992), 245–254 | DOI | MR | Zbl

[5] Timan A. F., “The strengthening of the theorem of Jackson on the best approximation of continuous functions on a finite interval of the real axis”, Dokl. Akad. Nauk SSSR, 78:1 (1951), 17–20 | MR | Zbl

[6] Dzyadyk V. K., “On the approximation of functions by ordinary polynomials on a finite interval of the real axis”, Izvestiia AN SSSR. Ser. matematicheskaia, 22:3 (1958), 337–354 | MR | Zbl

[7] Freud G., “Uber die Approximation Reelen Stetiger Functionen Durch Gewohnliche Polinome”, Math. Ann., 137:1 (1959), 17–25 | DOI | MR | Zbl

[8] Teljakovskii S. A., “Two theorems on approximation of functions by algebraic polynomials”, Mat. Sb. (N.S.), 70(112):2 (1966), 252–265 | MR | Zbl

[9] Brudnyi Yu. A., “The approximation of functions by algebraic polynomials”, Mathematics of the USSR-Izvestiya, 2:4 (1968), 735–743 | DOI | MR | Zbl | Zbl

[10] Lorentz G. G., Zeller K. L., “Degree of Approximation by Monotone Polynomials. II”, J. Approx. Theory, 2:3 (1969), 265–269 | DOI | MR | Zbl

[11] Shevchuk I. A., Approximation by polynomials and traces continuous on the interval functions, Naukova dumka, Kiev, 1992, 225 pp. (in Russian)

[12] Shvedov A. S., “Jackson's theorem in $L^p$, $0

1$, for algebraic polynomials, and orders of comonotone approximations”, Math. Notes, 25:1 (1979), 57–63 | DOI | MR | Zbl | Zbl

[13] Shvedov A. S., “Comonotone approximation of functions by polynomials”, Dokl. Akad. Nauk SSSR, 250:1 (1980), 39–42 | MR

[14] Dzyadyk V. K., Introduction to the theory of uniform approximation of functions by polynomials, Nauka, Moscow, 1977, 512 pp. (in Russian) | MR | Zbl