A mathematical theory of plane harmonic coupled thermoelastic waves in type-I micropolar continua
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 1, pp. 77-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper is devoted to an analysis of plane harmonic coupled thermoelastic waves of displacements, microrotations and temperature propagating in continua. The analysis is carried out in the framework of linear type-I (GNI/CTE) theory of thermoelastic micropolar continuum. Additional microrotations and moment stresses are taken into consideration. Propagating wave surfaces of weak discontinuities of displacements, microrotations, and temperature are studied by compatibility conditions technique due to Hadamard and Thomas. Wavenumbers (complex propagation constants (CPC)) of plane harmonic coupled thermoelastic waves are obtained. In order to determine the wavenumbers a bicubic and a biquadratic algebraic equations are derived for waves of displacements, microrotations, and temperature. Those equations are then analyzed by the computer algebra system Mathematica. Algebraic forms expressed by complex multivalued square and cubic radicals are obtained for wavenumbers of transverse and longitudinal thermoelastic waves.
@article{ISU_2014_14_1_a8,
     author = {V. A. Kovalev and E. V. Murashkin and Yu. N. Radayev},
     title = {A mathematical theory of plane harmonic coupled thermoelastic waves in {type-I} micropolar continua},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {77--87},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a8/}
}
TY  - JOUR
AU  - V. A. Kovalev
AU  - E. V. Murashkin
AU  - Yu. N. Radayev
TI  - A mathematical theory of plane harmonic coupled thermoelastic waves in type-I micropolar continua
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 77
EP  - 87
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a8/
LA  - ru
ID  - ISU_2014_14_1_a8
ER  - 
%0 Journal Article
%A V. A. Kovalev
%A E. V. Murashkin
%A Yu. N. Radayev
%T A mathematical theory of plane harmonic coupled thermoelastic waves in type-I micropolar continua
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 77-87
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a8/
%G ru
%F ISU_2014_14_1_a8
V. A. Kovalev; E. V. Murashkin; Yu. N. Radayev. A mathematical theory of plane harmonic coupled thermoelastic waves in type-I micropolar continua. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 1, pp. 77-87. http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a8/

[1] Cosserat E. et F., Theorie des corps deformables, Librairie Scientifique A. Hermann et Fils, Paris, 1909, 226 pp.

[2] Green A. E., Naghdi P. M., “On undamped heat waves in an elastic solid”, J. Therm. Stress, 15 (1992), 253–264 | DOI | MR

[3] Green A. E., Naghdi P. M., “Thermoelasticity without energy dissipation”, J. Elasticity, 31 (1993), 189–208 | DOI | MR | Zbl

[4] Radayev Yu. N., Semenov D. A., “Harmonic coupled CTE-thermoelastic waves in a free cylindrical waveguide”, Vestn. Samar. Gos. Univ. Natural sciences ser., 2008, no. 8/1(67), 411–459

[5] Kovalev V. A., Radayev Yu. N., Semenov D. A., “Coupled dynamic problems in hyperbolic thermoelasticity”, Izv. Sarat. Univ. (N. S.), Ser. Math. Mech. Inform., 10:4, pt. 2 (2009), 94–128

[6] Kovalev V. A., Radayev Yu. N., “Wavenumbers of plane GNIII-thermoelastic waves and inequality, providing their normality”, Izv. Sarat. Univ. (N.S.), Ser. Math. Mech. Inform., 10:3 (2010), 46–53

[7] Kovalev V. A., Radayev Yu. N., Wave problems of field theory and thermomechanics, Saratov. Univ. Press, Saratov, 2010, 328 pp.

[8] Nowacki W., Theory of asymmetric elasticity, Pergamon Press, Oxford, 1986, 384 pp. | MR | Zbl

[9] Eringen A. S., Microcontinuum field theories, v. 1, Foundations and Solids, Springer, Berlin–Heidelberg–N.Y., 1999, 325 pp. | Zbl

[10] Nowacki W., Theory of elasticity, Mir, Moscow, 1975, 872 pp. | MR