About harmonic analysis of periodic at infinity functions
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 1, pp. 28-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider slowly varying and periodic at infinity multivariable functions in Banach space. We introduce the notion of Fourier series of periodic at infinity function, study the properties of Fourier series and their convergence. Basic results are derived with the use of isometric representations theory.
@article{ISU_2014_14_1_a3,
     author = {I. I. Strukova},
     title = {About harmonic analysis of periodic at infinity functions},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {28--38},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a3/}
}
TY  - JOUR
AU  - I. I. Strukova
TI  - About harmonic analysis of periodic at infinity functions
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 28
EP  - 38
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a3/
LA  - ru
ID  - ISU_2014_14_1_a3
ER  - 
%0 Journal Article
%A I. I. Strukova
%T About harmonic analysis of periodic at infinity functions
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 28-38
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a3/
%G ru
%F ISU_2014_14_1_a3
I. I. Strukova. About harmonic analysis of periodic at infinity functions. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 1, pp. 28-38. http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a3/

[1] Daletsky Yu. L., Krein M. G., Stability of Solutions of Differential Equations in Banach Space. Nonlinear Analysis and Its Applications, Nauka, Moscow, 1970, 534 pp. | MR

[2] Pak I. N., “On the sums of trigonometric series”, Rus. Math. Surv., 35:2 (1980), 105–168 | DOI | MR | Zbl | Zbl

[3] Karamata J., “Sur un mode de croissance régulière. Théorèmes fondamentaux”, Bulletin S. M. F., 61 (1933), 55–62 | MR | Zbl

[4] Hardy G. H., “A theorem concerning trigonometrical series”, Journal L. M. S., 3 (1928), 12–13 | Zbl

[5] Seneta E., Regularly varying functions, Lecture Notes in Mathematics, 508, Springer-Verlag, Berlin, 1976 | DOI | MR | Zbl

[6] Levin B. Ya., Distribution of zeros of entire functions, Gostekhizdat, Moscow, 1956, 632 pp.

[7] Strukova I. I., “Wiener's theorem for periodic at infinity functions”, Izv. Saratov. Univ. (N.S.), Ser. Math. Mech. Inform., 12:4 (2012), 34–41

[8] Baskakov A. G., “Spectral tests for the almost periodicity of the solutions of functional equations”, Math. Notes, 24:1–2 (1978), 606–612 | DOI | MR | Zbl

[9] Baskakov A. G., “Bernšteĭn-type inequalities in abstract harmonic analysis”, Siberian Math. J., 20:5 (1979), 665–672 | DOI | MR | Zbl

[10] Baskakov A. G., “General ergodic theorems in Banach modules”, J. Funct. Anal., 14:3 (1980), 215–217 | DOI | MR | Zbl

[11] Baskakov A. G., “Spectral synthesis in Banach modules over commutative Banach algebras”, Math. Notes, 34:3–4 (1983), 776–782 | DOI | MR | Zbl

[12] Baskakov A. G., “Harmonic analysis of cosine and exponential operator-valued functions”, Math. of the USSR-Sbornik, 52:1 (1985), 63–90 | DOI | MR | MR | Zbl | Zbl

[13] Baskakov A. G., “Operator ergodic theorems and complementability of subspaces of Banach spaces”, Soviet Math., 32:11 (1988), 1–14 | MR | Zbl

[14] Baskakov A. G., “Wiener's theorem and asymptotic estimates for elements of inverse matrices”, Funct. Anal. Appl., 24:3 (1990), 222–224 | DOI | MR | Zbl

[15] Baskakov A. G., “Abstract harmonic analysis and asymptotic estimates for elements of inverse matrices”, Math. Notes, 52:2 (1992), 764–771 | DOI | MR | Zbl

[16] Baskakov A. G., “Asymptotic estimates for elements of matrices of inverse operators, and harmonic analysis”, Siberian Math. J., 38:1 (1997), 10–22 | DOI | MR | Zbl

[17] Baskakov A. G., “Estimates for the elements of inverse matrices, and the spectral analysis of linear operators”, Izv. Math., 61:6 (1997), 1113–1135 | DOI | DOI | MR | Zbl

[18] Baskakov A. G., “Theory of representations of Banach algebras, and abelian groups and semigroups in the spectral analysis of linear operators”, J. Math. Sci. (N.Y.), 137:4 (2006), 4885–5036 | DOI | MR | Zbl

[19] Baskakov A. G., Krishtal I. A., “Harmonic analysis of causal operators and their spectral properties”, Izv. Math., 69:3 (2005), 439–486 | DOI | DOI | MR | Zbl

[20] Kupcov N. P., “Direct and inverse theorems of approximation theory and semigroups of operators”, Uspehi Mat. Nauk, 23:4 (1968), 117–178 | MR | Zbl

[21] Hille E., Phillips R. S., Functional analysis and semi-groups, AMS Colloquium Publications, 31, rev. ed., American Math. Soc., Providence, R.I., 1957 | MR | Zbl

[22] Zygmund A., Trigonometric series, v. 1, Cambridge Univ. Press, 1959, 615 pp. | MR | MR | Zbl

[23] Jackson D., Über die Genauigkeit der Annäherung stetiger Funktionen durch ganze rationale Funktionen gegebenen Grades und trigonometrische Summen gegebener Ordnung, Preisschrift und Dissertation, Universitat Gottingen, 1911