Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2014_14_1_a3, author = {I. I. Strukova}, title = {About harmonic analysis of periodic at infinity functions}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {28--38}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a3/} }
TY - JOUR AU - I. I. Strukova TI - About harmonic analysis of periodic at infinity functions JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2014 SP - 28 EP - 38 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a3/ LA - ru ID - ISU_2014_14_1_a3 ER -
I. I. Strukova. About harmonic analysis of periodic at infinity functions. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 1, pp. 28-38. http://geodesic.mathdoc.fr/item/ISU_2014_14_1_a3/
[1] Daletsky Yu. L., Krein M. G., Stability of Solutions of Differential Equations in Banach Space. Nonlinear Analysis and Its Applications, Nauka, Moscow, 1970, 534 pp. | MR
[2] Pak I. N., “On the sums of trigonometric series”, Rus. Math. Surv., 35:2 (1980), 105–168 | DOI | MR | Zbl | Zbl
[3] Karamata J., “Sur un mode de croissance régulière. Théorèmes fondamentaux”, Bulletin S. M. F., 61 (1933), 55–62 | MR | Zbl
[4] Hardy G. H., “A theorem concerning trigonometrical series”, Journal L. M. S., 3 (1928), 12–13 | Zbl
[5] Seneta E., Regularly varying functions, Lecture Notes in Mathematics, 508, Springer-Verlag, Berlin, 1976 | DOI | MR | Zbl
[6] Levin B. Ya., Distribution of zeros of entire functions, Gostekhizdat, Moscow, 1956, 632 pp.
[7] Strukova I. I., “Wiener's theorem for periodic at infinity functions”, Izv. Saratov. Univ. (N.S.), Ser. Math. Mech. Inform., 12:4 (2012), 34–41
[8] Baskakov A. G., “Spectral tests for the almost periodicity of the solutions of functional equations”, Math. Notes, 24:1–2 (1978), 606–612 | DOI | MR | Zbl
[9] Baskakov A. G., “Bernšteĭn-type inequalities in abstract harmonic analysis”, Siberian Math. J., 20:5 (1979), 665–672 | DOI | MR | Zbl
[10] Baskakov A. G., “General ergodic theorems in Banach modules”, J. Funct. Anal., 14:3 (1980), 215–217 | DOI | MR | Zbl
[11] Baskakov A. G., “Spectral synthesis in Banach modules over commutative Banach algebras”, Math. Notes, 34:3–4 (1983), 776–782 | DOI | MR | Zbl
[12] Baskakov A. G., “Harmonic analysis of cosine and exponential operator-valued functions”, Math. of the USSR-Sbornik, 52:1 (1985), 63–90 | DOI | MR | MR | Zbl | Zbl
[13] Baskakov A. G., “Operator ergodic theorems and complementability of subspaces of Banach spaces”, Soviet Math., 32:11 (1988), 1–14 | MR | Zbl
[14] Baskakov A. G., “Wiener's theorem and asymptotic estimates for elements of inverse matrices”, Funct. Anal. Appl., 24:3 (1990), 222–224 | DOI | MR | Zbl
[15] Baskakov A. G., “Abstract harmonic analysis and asymptotic estimates for elements of inverse matrices”, Math. Notes, 52:2 (1992), 764–771 | DOI | MR | Zbl
[16] Baskakov A. G., “Asymptotic estimates for elements of matrices of inverse operators, and harmonic analysis”, Siberian Math. J., 38:1 (1997), 10–22 | DOI | MR | Zbl
[17] Baskakov A. G., “Estimates for the elements of inverse matrices, and the spectral analysis of linear operators”, Izv. Math., 61:6 (1997), 1113–1135 | DOI | DOI | MR | Zbl
[18] Baskakov A. G., “Theory of representations of Banach algebras, and abelian groups and semigroups in the spectral analysis of linear operators”, J. Math. Sci. (N.Y.), 137:4 (2006), 4885–5036 | DOI | MR | Zbl
[19] Baskakov A. G., Krishtal I. A., “Harmonic analysis of causal operators and their spectral properties”, Izv. Math., 69:3 (2005), 439–486 | DOI | DOI | MR | Zbl
[20] Kupcov N. P., “Direct and inverse theorems of approximation theory and semigroups of operators”, Uspehi Mat. Nauk, 23:4 (1968), 117–178 | MR | Zbl
[21] Hille E., Phillips R. S., Functional analysis and semi-groups, AMS Colloquium Publications, 31, rev. ed., American Math. Soc., Providence, R.I., 1957 | MR | Zbl
[22] Zygmund A., Trigonometric series, v. 1, Cambridge Univ. Press, 1959, 615 pp. | MR | MR | Zbl
[23] Jackson D., Über die Genauigkeit der Annäherung stetiger Funktionen durch ganze rationale Funktionen gegebenen Grades und trigonometrische Summen gegebener Ordnung, Preisschrift und Dissertation, Universitat Gottingen, 1911