On universality of certain zeta-functions
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 67-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that a generalization of the Hurwitz zeta-function – the periodic Hurwitz zeta-function with transcendental parameter is universal in the sense that its shifts approximate any analytic function. In the paper, the transcendence condition is replaced by a simpler one on the linear independence of a certain set.
@article{ISU_2013_13_4_a9,
     author = {A. Laurin\v{c}ikas and R. Macaitien\.{e} and D. Mokhov and D. \v{S}iau\v{c}i\={u}nas},
     title = {On universality of certain zeta-functions},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {67--72},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a9/}
}
TY  - JOUR
AU  - A. Laurinčikas
AU  - R. Macaitienė
AU  - D. Mokhov
AU  - D. Šiaučiūnas
TI  - On universality of certain zeta-functions
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 67
EP  - 72
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a9/
LA  - ru
ID  - ISU_2013_13_4_a9
ER  - 
%0 Journal Article
%A A. Laurinčikas
%A R. Macaitienė
%A D. Mokhov
%A D. Šiaučiūnas
%T On universality of certain zeta-functions
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 67-72
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a9/
%G ru
%F ISU_2013_13_4_a9
A. Laurinčikas; R. Macaitienė; D. Mokhov; D. Šiaučiūnas. On universality of certain zeta-functions. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 67-72. http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a9/

[1] Javtokas A., Laurinčikas A., “The universality of the periodic Hurwitz zeta-function”, Integral Transforms Spec. Funct., 17:10 (2006), 711–722 | DOI | MR | Zbl

[2] Cassels J. W. S., “Footnote to a note of Davenport and Heilbronn”, J. London Math. Soc., 36 (1961), 171–184 | MR

[3] Laurinčikas A., Garunkštis R., The Lerch Zeta-Function, Kluwer, Dordrecht, 2002, 189 pp. | MR | Zbl

[4] Heyer H., Probability Measures on Locally Compact Groups, Springer, Berlin, 1977, 531 pp. | MR | Zbl

[5] Billingsley P., Convergence of Probability Measures, Wiley, N.Y., 1968, 272 pp. | MR | Zbl

[6] Javtokas A., Laurinčikas A., “On the periodic zeta-function”, Hardy-Ramanujan J., 29 (2006), 18–36 | MR | Zbl

[7] Mergelyan S. N., “Uniform approximation to functions of complex variable”, Usp. Matem. Nauk, 7:2 (1952), 31–122 | MR | Zbl