Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2013_13_4_a9, author = {A. Laurin\v{c}ikas and R. Macaitien\.{e} and D. Mokhov and D. \v{S}iau\v{c}i\={u}nas}, title = {On universality of certain zeta-functions}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {67--72}, publisher = {mathdoc}, volume = {13}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a9/} }
TY - JOUR AU - A. Laurinčikas AU - R. Macaitienė AU - D. Mokhov AU - D. Šiaučiūnas TI - On universality of certain zeta-functions JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2013 SP - 67 EP - 72 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a9/ LA - ru ID - ISU_2013_13_4_a9 ER -
%0 Journal Article %A A. Laurinčikas %A R. Macaitienė %A D. Mokhov %A D. Šiaučiūnas %T On universality of certain zeta-functions %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2013 %P 67-72 %V 13 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a9/ %G ru %F ISU_2013_13_4_a9
A. Laurinčikas; R. Macaitienė; D. Mokhov; D. Šiaučiūnas. On universality of certain zeta-functions. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 67-72. http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a9/
[1] Javtokas A., Laurinčikas A., “The universality of the periodic Hurwitz zeta-function”, Integral Transforms Spec. Funct., 17:10 (2006), 711–722 | DOI | MR | Zbl
[2] Cassels J. W. S., “Footnote to a note of Davenport and Heilbronn”, J. London Math. Soc., 36 (1961), 171–184 | MR
[3] Laurinčikas A., Garunkštis R., The Lerch Zeta-Function, Kluwer, Dordrecht, 2002, 189 pp. | MR | Zbl
[4] Heyer H., Probability Measures on Locally Compact Groups, Springer, Berlin, 1977, 531 pp. | MR | Zbl
[5] Billingsley P., Convergence of Probability Measures, Wiley, N.Y., 1968, 272 pp. | MR | Zbl
[6] Javtokas A., Laurinčikas A., “On the periodic zeta-function”, Hardy-Ramanujan J., 29 (2006), 18–36 | MR | Zbl
[7] Mergelyan S. N., “Uniform approximation to functions of complex variable”, Usp. Matem. Nauk, 7:2 (1952), 31–122 | MR | Zbl