Some questions of number-theoretical method in approximation analysis
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 47-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article gives an overview of several actual problems of optimal coefficients method. This overview was done on September 12, 2013 on XI internation conference “Algebra and number theory: modern problems and applications” in Saratov city.
@article{ISU_2013_13_4_a5,
     author = {L. P. Dobrovolskaya and M. N. Dobrovolsky and N. M. Dobrovol'skii and N. N. Dobrovol'skii and I. Y. Rebrova},
     title = {Some questions of number-theoretical method in approximation analysis},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {47--52},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a5/}
}
TY  - JOUR
AU  - L. P. Dobrovolskaya
AU  - M. N. Dobrovolsky
AU  - N. M. Dobrovol'skii
AU  - N. N. Dobrovol'skii
AU  - I. Y. Rebrova
TI  - Some questions of number-theoretical method in approximation analysis
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 47
EP  - 52
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a5/
LA  - ru
ID  - ISU_2013_13_4_a5
ER  - 
%0 Journal Article
%A L. P. Dobrovolskaya
%A M. N. Dobrovolsky
%A N. M. Dobrovol'skii
%A N. N. Dobrovol'skii
%A I. Y. Rebrova
%T Some questions of number-theoretical method in approximation analysis
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 47-52
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a5/
%G ru
%F ISU_2013_13_4_a5
L. P. Dobrovolskaya; M. N. Dobrovolsky; N. M. Dobrovol'skii; N. N. Dobrovol'skii; I. Y. Rebrova. Some questions of number-theoretical method in approximation analysis. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 47-52. http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a5/

[1] Korobov N. M., Number-theoretic methods in approximations analysis, Moscow, 2004 | MR

[2] Dobrovolskiy N. M., Hyperbolic zeta-function on lattices, Dep. v VINITI 24.08.84, No 6090–84, Tula, 1984

[3] Dobrovolskaya L. P., Dobrovolskiy M. N., Dobrovolskiy N. M., Dobrovolskiy N. N., “Hyperbolic zeta-functions on nets and lattices and computation of optimal coefficients”, Chebyshev collection, 13:4(44) (2012), 4–107 | Zbl

[4] Dobrovolskaya L. P., Dobrovolskiy M. N., Dobrovolskiy N. M., Dobrovolskiy N. N., Mnogomernye teoretikochislovye setki i reshetki i algoritmy poiska optimal’nykh koeffitsientov, State Pedagogic University Press, Tula, 2012, 283 pp.

[5] Dobrovolskiy N. M., Multidimensional number-theoretic nets and lattices and their applications, State Pedagogic University Press, Tula, 2005, 195 pp.

[6] Dobrovolskiy M. N., “Functional equation of hyperbolic zeta-function on integral lattices”, Vestn. Mosk. un-ta. Ser. 1. Matematika. Mekhanika, 2007, no. 3, 18–23 | MR | Zbl