Some questions of number-theoretical method in approximation analysis
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 47-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article gives an overview of several actual problems of optimal coefficients method. This overview was done on September 12, 2013 on XI internation conference “Algebra and number theory: modern problems and applications” in Saratov city.
@article{ISU_2013_13_4_a5,
     author = {L. P. Dobrovolskaya and M. N. Dobrovolsky and N. M. Dobrovol'skii and N. N. Dobrovol'skii and I. Y. Rebrova},
     title = {Some questions of number-theoretical method in approximation analysis},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {47--52},
     year = {2013},
     volume = {13},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a5/}
}
TY  - JOUR
AU  - L. P. Dobrovolskaya
AU  - M. N. Dobrovolsky
AU  - N. M. Dobrovol'skii
AU  - N. N. Dobrovol'skii
AU  - I. Y. Rebrova
TI  - Some questions of number-theoretical method in approximation analysis
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 47
EP  - 52
VL  - 13
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a5/
LA  - ru
ID  - ISU_2013_13_4_a5
ER  - 
%0 Journal Article
%A L. P. Dobrovolskaya
%A M. N. Dobrovolsky
%A N. M. Dobrovol'skii
%A N. N. Dobrovol'skii
%A I. Y. Rebrova
%T Some questions of number-theoretical method in approximation analysis
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 47-52
%V 13
%N 4
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a5/
%G ru
%F ISU_2013_13_4_a5
L. P. Dobrovolskaya; M. N. Dobrovolsky; N. M. Dobrovol'skii; N. N. Dobrovol'skii; I. Y. Rebrova. Some questions of number-theoretical method in approximation analysis. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 47-52. http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a5/

[1] Korobov N. M., Number-theoretic methods in approximations analysis, Moscow, 2004 | MR

[2] Dobrovolskiy N. M., Hyperbolic zeta-function on lattices, Dep. v VINITI 24.08.84, No 6090–84, Tula, 1984

[3] Dobrovolskaya L. P., Dobrovolskiy M. N., Dobrovolskiy N. M., Dobrovolskiy N. N., “Hyperbolic zeta-functions on nets and lattices and computation of optimal coefficients”, Chebyshev collection, 13:4(44) (2012), 4–107 | Zbl

[4] Dobrovolskaya L. P., Dobrovolskiy M. N., Dobrovolskiy N. M., Dobrovolskiy N. N., Mnogomernye teoretikochislovye setki i reshetki i algoritmy poiska optimal’nykh koeffitsientov, State Pedagogic University Press, Tula, 2012, 283 pp.

[5] Dobrovolskiy N. M., Multidimensional number-theoretic nets and lattices and their applications, State Pedagogic University Press, Tula, 2005, 195 pp.

[6] Dobrovolskiy M. N., “Functional equation of hyperbolic zeta-function on integral lattices”, Vestn. Mosk. un-ta. Ser. 1. Matematika. Mekhanika, 2007, no. 3, 18–23 | MR | Zbl