Integrals of the Loewner equation with exponential driving function
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 98-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the qualitative local behavior of trajectories for the ordinary Loewner differential equation with a driving function which is inverse to the exponential function of an integer power. All the singular points and the corresponding singular solutions are described. It is shown that this driving function generates solutions to the Loewner equation which map conformally a half-plane slit along a smooth curve onto the upper half-plane. The asymptotical correspondence between harmonic measures of two slit sides is derived.
@article{ISU_2013_13_4_a16,
     author = {D. V. Prokhorov and K. A. Samsonova},
     title = {Integrals of the {Loewner} equation with exponential driving function},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {98--108},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a16/}
}
TY  - JOUR
AU  - D. V. Prokhorov
AU  - K. A. Samsonova
TI  - Integrals of the Loewner equation with exponential driving function
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 98
EP  - 108
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a16/
LA  - ru
ID  - ISU_2013_13_4_a16
ER  - 
%0 Journal Article
%A D. V. Prokhorov
%A K. A. Samsonova
%T Integrals of the Loewner equation with exponential driving function
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 98-108
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a16/
%G ru
%F ISU_2013_13_4_a16
D. V. Prokhorov; K. A. Samsonova. Integrals of the Loewner equation with exponential driving function. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 98-108. http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a16/

[1] Löwner K., “Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I”, Math. Ann., 89:1–2 (1923), 103–121 | DOI | MR | Zbl

[2] Markina I., Vasil'ev A., “Virasoro algebra and dynamics in the space of univalent functions”, Contemp. Math., 525 (2010), 85–116 | DOI | MR | Zbl

[3] Aleksandrov I. A., Parametric continuations in the theory of univalent functions, Nauka, Moscow, 1976, 344 pp. | MR

[4] Lind J., Marshall D. E., Rohde S., “Collisions and spirals of Loewner traces”, Duke Math. J., 154:3 (2010), 527–573 | DOI | MR | Zbl

[5] Kufarev P. P., “A remark on integrals of Löwner's equation”, Doklady Akad. Nauk SSSR, 57:7 (1947), 655–656 | MR | Zbl

[6] Kager W., Nienhuis B., Kadanoff L. P., “Exact solutions for Loewner evolutions”, J. Statist. Phys., 115:3–4 (2004), 805–822 | DOI | MR | Zbl

[7] Prokhorov D. V., Zakharov A. M., “Integrability of a partial case of the Löwner equation”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 10:2 (2010), 19–23

[8] Marshall D. E., Rohde S., “The Loewner differential equation and slit mappings”, J. Amer. Math. Soc., 18:4 (2005), 763–778 | DOI | MR | Zbl

[9] Prokhorov D., Vasil'ev A., “Singular and tangent slit solutions to the Löwner equation”, Analysis and Mathematical Physics, eds. B. Gustafsson, A. Vasil'ev, Birkhauser, Berlin, 2009, 455–463 | DOI | MR

[10] Sansone G., Equazioni differenziale nel campo reale, P. $2^a$, $2^a$ ediz., Bologna, 1949

[11] Poincaré H., “Sur les courbes définies par une équation différentielle”, J. Math. Pures Appl., 4:2 (1886), 151–217 | MR

[12] Bendixson I., “Sur les courbes définies par les équations différentielles”, Acta Math., 24 (1901), 1–88 | DOI | MR

[13] Golubew W., Differentialgleichungen im komplexen, veb deutsch, Verlag Wiss., Berlin, 1958, 312 pp. | MR | Zbl

[14] Sansone G., Equazioni differenziale nel campo reale, P. $1^a$, $2^a$ ediz., Bologna, 1948 | MR

[15] Borel E., “Mémoire sur les séries divergentes”, Ann. Sci. École Norm. Sup., 16:3 (1899), 9–131 | MR | Zbl

[16] Hayman W., Kennedy P., Subharmonic functions, Academic Press, London, 1976 | Zbl

[17] Goluzin G., Geometric theory of functions of a complex variable, Transl. Math. Monographs, 26, AMS, Providence, RI, 1969, 676 pp. | MR | MR | Zbl | Zbl