Integrals of the Loewner equation with exponential driving function
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 98-108

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the qualitative local behavior of trajectories for the ordinary Loewner differential equation with a driving function which is inverse to the exponential function of an integer power. All the singular points and the corresponding singular solutions are described. It is shown that this driving function generates solutions to the Loewner equation which map conformally a half-plane slit along a smooth curve onto the upper half-plane. The asymptotical correspondence between harmonic measures of two slit sides is derived.
@article{ISU_2013_13_4_a16,
     author = {D. V. Prokhorov and K. A. Samsonova},
     title = {Integrals of the {Loewner} equation with exponential driving function},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {98--108},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a16/}
}
TY  - JOUR
AU  - D. V. Prokhorov
AU  - K. A. Samsonova
TI  - Integrals of the Loewner equation with exponential driving function
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 98
EP  - 108
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a16/
LA  - ru
ID  - ISU_2013_13_4_a16
ER  - 
%0 Journal Article
%A D. V. Prokhorov
%A K. A. Samsonova
%T Integrals of the Loewner equation with exponential driving function
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 98-108
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a16/
%G ru
%F ISU_2013_13_4_a16
D. V. Prokhorov; K. A. Samsonova. Integrals of the Loewner equation with exponential driving function. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 4, pp. 98-108. http://geodesic.mathdoc.fr/item/ISU_2013_13_4_a16/