Algorithm variable order, step and the configuration variables for solving stiff problems
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 3, pp. 35-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

An inequality for stability control of a Ceschino's scheme of second order of accuracy is constructed. A numerical formula of order one is developed that is based on the stages of the this method and its stability interval is extended to 32. On a base of $L$-stable $(2,1)$-scheme and a numerical Ceschino's formula, an algorithm of alternating structure, in which an efficient numerical formula is chosen on an every step by a stability criterion, is constructed. The algorithm is intended for solving stiff and non-stiff problems. There are shown results of calculations, confirming efficiency of this algorithm.
@article{ISU_2013_13_3_a4,
     author = {E. A. Novikov},
     title = {Algorithm variable order, step and the configuration variables for solving stiff problems},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {35--43},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a4/}
}
TY  - JOUR
AU  - E. A. Novikov
TI  - Algorithm variable order, step and the configuration variables for solving stiff problems
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 35
EP  - 43
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a4/
LA  - ru
ID  - ISU_2013_13_3_a4
ER  - 
%0 Journal Article
%A E. A. Novikov
%T Algorithm variable order, step and the configuration variables for solving stiff problems
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 35-43
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a4/
%G ru
%F ISU_2013_13_3_a4
E. A. Novikov. Algorithm variable order, step and the configuration variables for solving stiff problems. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 3, pp. 35-43. http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a4/

[1] Hairer E., Wanner G., Solving ordinary differential equations. II. Stiff and differential-Algebraic problems, Springer-Verlag, New York, 1996, 601 pp. | MR | Zbl

[2] Byrne G. D., Hindmarsh A. C., “ODE solvers: a review of current and coming attractions”, J. of Comput. Physics, 70:1 (1987), 1–62 | DOI | MR | Zbl

[3] Rosenbrock H. H., “Some general implicit processes for the numerical solution of differential equations”, Computer J., 5 (1963), 329–330 | DOI | MR | Zbl

[4] Novikov V. A., Novikov E. A., Yumatova L. A, “Freezing of a matrix of Jacobi in the Rosenbrock method of the second order of accuracy”, Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 27:3 (1987), 385–390 | MR | Zbl

[5] Novikov E. A., “Construction of algorithm for the integrating stiff differential equations on nonuniform schemes”, Soviet Math. Dokl., 30:2 (1984), 358–361 | MR | Zbl

[6] Novikov E. A., “Algorithm of Integrating Stiff Problems Using the Explicit and Implicit Methods”, Izv. Sarat. Univ. N.S. Ser. Math. Mech. Inform., 12:4 (2012), 19–27

[7] Novikov V. A., Novikov E. A., “Increase of efficiency of algorithms of integration of the ordinary differential equations at the expense of stability control”, Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 25:7 (1985), 1023–1030 | MR | Zbl

[8] Novikov E. A., Explicit methods for stiff systems, Nauka, Novosibirsk, 1997, 197 pp. | MR

[9] Novikov E. A., Shornikov Yu. V., Computer modeling of stiff hybrid systems, Publishing house NGTU, Novosibirsk, 2012, 450 pp.

[10] Novikov E. A., Shitov Yu. A., Shokin Yu. I., “One-step iteration-free methods of solving stiff systems”, Soviet Math. Dokl., 38:1 (1989), 212–216 | MR | Zbl

[11] Novikov A. E., Novikov E. A., “Numerical integration of stiff systems with low accuracy”, Mathematical Models and Computer Simulations, 2:4 (2010), 443–452 | DOI | MR | Zbl

[12] Ceschino F., Kuntzman J., Numerical solution of initial value problems, Prentice-Hall, Englewood Cliffs, New Jersey, 1966, 287 pp. | MR | Zbl

[13] Hindmarsh A. C., ODEPACK, a systematized collection of ODE solvers, Preprint UCRL-88007, Lawrence Livermore National Laboratory, 1982 | MR