Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2013_13_3_a4, author = {E. A. Novikov}, title = {Algorithm variable order, step and the configuration variables for solving stiff problems}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {35--43}, publisher = {mathdoc}, volume = {13}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a4/} }
TY - JOUR AU - E. A. Novikov TI - Algorithm variable order, step and the configuration variables for solving stiff problems JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2013 SP - 35 EP - 43 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a4/ LA - ru ID - ISU_2013_13_3_a4 ER -
%0 Journal Article %A E. A. Novikov %T Algorithm variable order, step and the configuration variables for solving stiff problems %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2013 %P 35-43 %V 13 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a4/ %G ru %F ISU_2013_13_3_a4
E. A. Novikov. Algorithm variable order, step and the configuration variables for solving stiff problems. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 3, pp. 35-43. http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a4/
[1] Hairer E., Wanner G., Solving ordinary differential equations. II. Stiff and differential-Algebraic problems, Springer-Verlag, New York, 1996, 601 pp. | MR | Zbl
[2] Byrne G. D., Hindmarsh A. C., “ODE solvers: a review of current and coming attractions”, J. of Comput. Physics, 70:1 (1987), 1–62 | DOI | MR | Zbl
[3] Rosenbrock H. H., “Some general implicit processes for the numerical solution of differential equations”, Computer J., 5 (1963), 329–330 | DOI | MR | Zbl
[4] Novikov V. A., Novikov E. A., Yumatova L. A, “Freezing of a matrix of Jacobi in the Rosenbrock method of the second order of accuracy”, Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 27:3 (1987), 385–390 | MR | Zbl
[5] Novikov E. A., “Construction of algorithm for the integrating stiff differential equations on nonuniform schemes”, Soviet Math. Dokl., 30:2 (1984), 358–361 | MR | Zbl
[6] Novikov E. A., “Algorithm of Integrating Stiff Problems Using the Explicit and Implicit Methods”, Izv. Sarat. Univ. N.S. Ser. Math. Mech. Inform., 12:4 (2012), 19–27
[7] Novikov V. A., Novikov E. A., “Increase of efficiency of algorithms of integration of the ordinary differential equations at the expense of stability control”, Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 25:7 (1985), 1023–1030 | MR | Zbl
[8] Novikov E. A., Explicit methods for stiff systems, Nauka, Novosibirsk, 1997, 197 pp. | MR
[9] Novikov E. A., Shornikov Yu. V., Computer modeling of stiff hybrid systems, Publishing house NGTU, Novosibirsk, 2012, 450 pp.
[10] Novikov E. A., Shitov Yu. A., Shokin Yu. I., “One-step iteration-free methods of solving stiff systems”, Soviet Math. Dokl., 38:1 (1989), 212–216 | MR | Zbl
[11] Novikov A. E., Novikov E. A., “Numerical integration of stiff systems with low accuracy”, Mathematical Models and Computer Simulations, 2:4 (2010), 443–452 | DOI | MR | Zbl
[12] Ceschino F., Kuntzman J., Numerical solution of initial value problems, Prentice-Hall, Englewood Cliffs, New Jersey, 1966, 287 pp. | MR | Zbl
[13] Hindmarsh A. C., ODEPACK, a systematized collection of ODE solvers, Preprint UCRL-88007, Lawrence Livermore National Laboratory, 1982 | MR