Cohomology of the Lie algebra of vector fields on some one-dimensional orbifold
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 3, pp. 14-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

I. M. Gelfand and D. B. Fuchs have proved that the cohomology algebra of the Lie algebra of vector fields on the unit circle is isomorphic to the tensor product of the polynomial ring with one generator of degree two and the exterior algebra with one generator of degree three. In the present paper the cohomology of the Lie algebra of vector fields on the one-dimensional orbifold $S^1/\mathbb Z_2$ are studied. $S^1/\mathbb Z_2$ is the orbit space under the $\mathbb Z_2$ group action on the unit circle by reflection in the $Ox$ axis. It has been proved that the cohomology algebra of the Lie algebra of vector fields on the orbifold is isomorphic to the tensor product of the exterior algebra with two generators of degree one and the polynomial ring with one generator of degree two. To prove this result author used the Gelfand–Fuchs method with some modifications.
@article{ISU_2013_13_3_a2,
     author = {E. Y. Volokitina},
     title = {Cohomology of the {Lie} algebra of vector fields on some one-dimensional orbifold},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {14--28},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a2/}
}
TY  - JOUR
AU  - E. Y. Volokitina
TI  - Cohomology of the Lie algebra of vector fields on some one-dimensional orbifold
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 14
EP  - 28
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a2/
LA  - ru
ID  - ISU_2013_13_3_a2
ER  - 
%0 Journal Article
%A E. Y. Volokitina
%T Cohomology of the Lie algebra of vector fields on some one-dimensional orbifold
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 14-28
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a2/
%G ru
%F ISU_2013_13_3_a2
E. Y. Volokitina. Cohomology of the Lie algebra of vector fields on some one-dimensional orbifold. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 3, pp. 14-28. http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a2/

[1] Volokitina E. Y., “Cohomology of Lie algebra of vector fields on $S_1/Z_2$”, Izv. Sarat. Univ. N.S. Ser. Math. Mech. Inform., 12:1 (2012), 8–15

[2] Gelfand I. M., Fuks D. B., “Cohomologies of Lie algebra of tangential vector fields of a smooth manifold”, Functional Analysis and Its Applications, 3:3 (1969), 194–210 | DOI | MR | Zbl

[3] Schwartz L., Théorie des distributiones, Hermann, Paris, 1951, 418 pp. | MR | Zbl

[4] Gelfand I. M., Vilenkin N. Ja., Generalized Functions, v. 4, Some Applications of Harmonic Analysis. Rigged Hilbert Spaces, Academic Press, New York, 1964, 384 pp. | MR | MR

[5] Gelfand I. M., Shilov G. E., Spaces of test and generalized functions, Fizmatgiz, Moscow, 1958, 308 pp. | MR | Zbl

[6] de Rham G., Differentiable manifolds, Izdatelstvo inostrannoj literatury, Moscow, 1956, 250 pp.

[7] Godeman R., Algebraic topology and theory of sheaves, Moscow, Izdatelstvo inostrannoj literatury, 1961, 320 pp. | MR

[8] Fomenko A. T., Fuks D. B., A course in homotopy topology, Nauka, Moscow, 1989, 528 pp. | MR