Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2013_13_3_a2, author = {E. Y. Volokitina}, title = {Cohomology of the {Lie} algebra of vector fields on some one-dimensional orbifold}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {14--28}, publisher = {mathdoc}, volume = {13}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a2/} }
TY - JOUR AU - E. Y. Volokitina TI - Cohomology of the Lie algebra of vector fields on some one-dimensional orbifold JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2013 SP - 14 EP - 28 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a2/ LA - ru ID - ISU_2013_13_3_a2 ER -
%0 Journal Article %A E. Y. Volokitina %T Cohomology of the Lie algebra of vector fields on some one-dimensional orbifold %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2013 %P 14-28 %V 13 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a2/ %G ru %F ISU_2013_13_3_a2
E. Y. Volokitina. Cohomology of the Lie algebra of vector fields on some one-dimensional orbifold. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 3, pp. 14-28. http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a2/
[1] Volokitina E. Y., “Cohomology of Lie algebra of vector fields on $S_1/Z_2$”, Izv. Sarat. Univ. N.S. Ser. Math. Mech. Inform., 12:1 (2012), 8–15
[2] Gelfand I. M., Fuks D. B., “Cohomologies of Lie algebra of tangential vector fields of a smooth manifold”, Functional Analysis and Its Applications, 3:3 (1969), 194–210 | DOI | MR | Zbl
[3] Schwartz L., Théorie des distributiones, Hermann, Paris, 1951, 418 pp. | MR | Zbl
[4] Gelfand I. M., Vilenkin N. Ja., Generalized Functions, v. 4, Some Applications of Harmonic Analysis. Rigged Hilbert Spaces, Academic Press, New York, 1964, 384 pp. | MR | MR
[5] Gelfand I. M., Shilov G. E., Spaces of test and generalized functions, Fizmatgiz, Moscow, 1958, 308 pp. | MR | Zbl
[6] de Rham G., Differentiable manifolds, Izdatelstvo inostrannoj literatury, Moscow, 1956, 250 pp.
[7] Godeman R., Algebraic topology and theory of sheaves, Moscow, Izdatelstvo inostrannoj literatury, 1961, 320 pp. | MR
[8] Fomenko A. T., Fuks D. B., A course in homotopy topology, Nauka, Moscow, 1989, 528 pp. | MR