Jordan--Dirichlet theorem for functional differential operator with involution
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 3, pp. 9-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the problem of decomposability of a function $f(x)$ into Fourier series with respect to the system of eigenfunctions of a functional-differential operator with involution $Ly=y'(1-x)+\alpha y'(x)+p_1(x)y(x)+p_2(x)y(1-x)$, $y(0)=\gamma y(1)$ is investigated. Based on the study of the resolvent of the operator easier and using the method of contour integration of the resolvent, we obtain the sufficient conditions for the convergence of the Fourier series for a function $f(x)$ (analogue of the Jordan–Dirichlet's theorem).
@article{ISU_2013_13_3_a1,
     author = {M. Sh. Burlutskaya},
     title = {Jordan--Dirichlet theorem for functional differential operator with involution},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {9--14},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a1/}
}
TY  - JOUR
AU  - M. Sh. Burlutskaya
TI  - Jordan--Dirichlet theorem for functional differential operator with involution
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 9
EP  - 14
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a1/
LA  - ru
ID  - ISU_2013_13_3_a1
ER  - 
%0 Journal Article
%A M. Sh. Burlutskaya
%T Jordan--Dirichlet theorem for functional differential operator with involution
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 9-14
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a1/
%G ru
%F ISU_2013_13_3_a1
M. Sh. Burlutskaya. Jordan--Dirichlet theorem for functional differential operator with involution. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 3, pp. 9-14. http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a1/

[1] Khromov A. P., “Equiconvergence theorems for integrodifferential and integral operators”, Mathematics of the USSR-Sbornik, 42:3 (1982), 331–355 | DOI | MR | Zbl

[2] Khromov A. P., “Inversion of integral operators with kernels discontinuous on the diagonal”, Math. Notes, 64:5–6 (1998), 804–813 | DOI | DOI | MR | Zbl

[3] Burlutskaya M. Sh., Kurdyumov V. P., Lukonina A. S., Khromov A. P., “A functional-differential operator with involution”, Doklady Math., 75:3 (2007), 399–402 | DOI | MR | Zbl

[4] Burlutskaya M. Sh., Khromov A. P., “On the same theorem on a equiconvergence at the whole segment for the functional-differential operators”, Izv. Sarat. Univ. N.S. Ser. Math. Mech. Inform., 9:4, pt. 1 (2009), 3–10