Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2013_13_3_a1, author = {M. Sh. Burlutskaya}, title = {Jordan--Dirichlet theorem for functional differential operator with involution}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {9--14}, publisher = {mathdoc}, volume = {13}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a1/} }
TY - JOUR AU - M. Sh. Burlutskaya TI - Jordan--Dirichlet theorem for functional differential operator with involution JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2013 SP - 9 EP - 14 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a1/ LA - ru ID - ISU_2013_13_3_a1 ER -
%0 Journal Article %A M. Sh. Burlutskaya %T Jordan--Dirichlet theorem for functional differential operator with involution %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2013 %P 9-14 %V 13 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a1/ %G ru %F ISU_2013_13_3_a1
M. Sh. Burlutskaya. Jordan--Dirichlet theorem for functional differential operator with involution. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 3, pp. 9-14. http://geodesic.mathdoc.fr/item/ISU_2013_13_3_a1/
[1] Khromov A. P., “Equiconvergence theorems for integrodifferential and integral operators”, Mathematics of the USSR-Sbornik, 42:3 (1982), 331–355 | DOI | MR | Zbl
[2] Khromov A. P., “Inversion of integral operators with kernels discontinuous on the diagonal”, Math. Notes, 64:5–6 (1998), 804–813 | DOI | DOI | MR | Zbl
[3] Burlutskaya M. Sh., Kurdyumov V. P., Lukonina A. S., Khromov A. P., “A functional-differential operator with involution”, Doklady Math., 75:3 (2007), 399–402 | DOI | MR | Zbl
[4] Burlutskaya M. Sh., Khromov A. P., “On the same theorem on a equiconvergence at the whole segment for the functional-differential operators”, Izv. Sarat. Univ. N.S. Ser. Math. Mech. Inform., 9:4, pt. 1 (2009), 3–10