Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2013_13_2_a12, author = {N. P. Fokina and I. E. Tananko}, title = {A method of routing control in queueing networks with changing topology}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {82--88}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_2_a12/} }
TY - JOUR AU - N. P. Fokina AU - I. E. Tananko TI - A method of routing control in queueing networks with changing topology JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2013 SP - 82 EP - 88 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2013_13_2_a12/ LA - ru ID - ISU_2013_13_2_a12 ER -
%0 Journal Article %A N. P. Fokina %A I. E. Tananko %T A method of routing control in queueing networks with changing topology %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2013 %P 82-88 %V 13 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2013_13_2_a12/ %G ru %F ISU_2013_13_2_a12
N. P. Fokina; I. E. Tananko. A method of routing control in queueing networks with changing topology. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 2, pp. 82-88. http://geodesic.mathdoc.fr/item/ISU_2013_13_2_a12/
[1] van Dijk N. M., “Analytic comparison results for communication networks”, Computer Communications, 21 (1998), 1495–1508 | DOI
[2] Chao X., “A queueing network model with catastrophes and product form solution”, Operations Research Letters, 18 (1995), 75–79 | DOI | MR | Zbl
[3] Sauer C., Daduna H., BCMP networks with unreliable servers, Preprint No 2003-01, Schwerpunkt Mathematische Statistik und Stochastische Prozesse, Universitat Hamburg, 2003
[4] Tananko I. E., “A method of optimal routing control in queueing networks with variable configuration”, Automatic Control and Computer Sciences, 40:3 (2006), 71–77
[5] Tananko I. E., “About of queueing networks with changing number of queues”, Izv. Sarat. Univ. N. S. Ser. Math. Mech. Inform., 5:1 (2005), 138–141
[6] Chakka R., Mitrani I., “Approximate solutions for open networks with breakdowns and repairs”, Stochastic Networks – Theory and Applications, Ch. 16, eds. F. P. Kelly, S. Zachary, I. Ziedins, Clarendon Press, Oxford, 1996, 267–280 | Zbl
[7] Vinod B., Altiok T., “Approximating unreliable queueing networks under the assumption of exponentiality”, J. Opl. Res. Soc., 37:3 (1986), 309–316 | DOI | Zbl
[8] van Dijk N. M., “Bounds and error bounds for queueing networks”, Annals of Operations Research, 79 (1998), 295–319 | DOI | MR | Zbl
[9] Thomas N., Thornley D., Zatschler H., “Approximate solution of a class of queueing networks with breakdowns”, Proc. of 17-th European Simulation Multiconference (Nottingham, UK, 9–11 June 2003), SCS-European Publishing House, Delft, Netherlands, 2003, 251–256
[10] Bambos N., Michailidis G., “Queueing networks of random link topology: stationary dynamics of maximal throughput schedules”, Queueing Systems, 50 (2005), 5–52 | DOI | MR | Zbl
[11] Tassiulas L., “Scheduling and performance limits of networks with constantly changing topology”, IEEE Transactions on Information Theory, 43:3 (1997), 1067–1073 | DOI | MR | Zbl
[12] Mitrophanov Yu. I., Synthesis of queueing networks, Sarat. Univ. Press, Saratov, 1995, 184 pp.
[13] Tananko I. E., “A method for optimization of routing matrices for open queueing networks”, Automatic Control and Computer Sciences, 36:4 (2002), 39–46