A method of routing control in queueing networks with changing topology
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 2, pp. 82-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

Closed exponential queueing networks with changing topology are considered. A method of routing control in given type queueing networks is proposed.
@article{ISU_2013_13_2_a12,
     author = {N. P. Fokina and I. E. Tananko},
     title = {A method of routing control in queueing networks with changing topology},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {82--88},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_2_a12/}
}
TY  - JOUR
AU  - N. P. Fokina
AU  - I. E. Tananko
TI  - A method of routing control in queueing networks with changing topology
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 82
EP  - 88
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_2_a12/
LA  - ru
ID  - ISU_2013_13_2_a12
ER  - 
%0 Journal Article
%A N. P. Fokina
%A I. E. Tananko
%T A method of routing control in queueing networks with changing topology
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 82-88
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_2_a12/
%G ru
%F ISU_2013_13_2_a12
N. P. Fokina; I. E. Tananko. A method of routing control in queueing networks with changing topology. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 2, pp. 82-88. http://geodesic.mathdoc.fr/item/ISU_2013_13_2_a12/

[1] van Dijk N. M., “Analytic comparison results for communication networks”, Computer Communications, 21 (1998), 1495–1508 | DOI

[2] Chao X., “A queueing network model with catastrophes and product form solution”, Operations Research Letters, 18 (1995), 75–79 | DOI | MR | Zbl

[3] Sauer C., Daduna H., BCMP networks with unreliable servers, Preprint No 2003-01, Schwerpunkt Mathematische Statistik und Stochastische Prozesse, Universitat Hamburg, 2003

[4] Tananko I. E., “A method of optimal routing control in queueing networks with variable configuration”, Automatic Control and Computer Sciences, 40:3 (2006), 71–77

[5] Tananko I. E., “About of queueing networks with changing number of queues”, Izv. Sarat. Univ. N. S. Ser. Math. Mech. Inform., 5:1 (2005), 138–141

[6] Chakka R., Mitrani I., “Approximate solutions for open networks with breakdowns and repairs”, Stochastic Networks – Theory and Applications, Ch. 16, eds. F. P. Kelly, S. Zachary, I. Ziedins, Clarendon Press, Oxford, 1996, 267–280 | Zbl

[7] Vinod B., Altiok T., “Approximating unreliable queueing networks under the assumption of exponentiality”, J. Opl. Res. Soc., 37:3 (1986), 309–316 | DOI | Zbl

[8] van Dijk N. M., “Bounds and error bounds for queueing networks”, Annals of Operations Research, 79 (1998), 295–319 | DOI | MR | Zbl

[9] Thomas N., Thornley D., Zatschler H., “Approximate solution of a class of queueing networks with breakdowns”, Proc. of 17-th European Simulation Multiconference (Nottingham, UK, 9–11 June 2003), SCS-European Publishing House, Delft, Netherlands, 2003, 251–256

[10] Bambos N., Michailidis G., “Queueing networks of random link topology: stationary dynamics of maximal throughput schedules”, Queueing Systems, 50 (2005), 5–52 | DOI | MR | Zbl

[11] Tassiulas L., “Scheduling and performance limits of networks with constantly changing topology”, IEEE Transactions on Information Theory, 43:3 (1997), 1067–1073 | DOI | MR | Zbl

[12] Mitrophanov Yu. I., Synthesis of queueing networks, Sarat. Univ. Press, Saratov, 1995, 184 pp.

[13] Tananko I. E., “A method for optimization of routing matrices for open queueing networks”, Automatic Control and Computer Sciences, 36:4 (2002), 39–46