Gradient Projection Algorithm for Strongly Convex Set
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 33-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

In our work we will discuss standard gradient projection algorithm, where a set is strongly convex of radius $R$ and a function is convex, differentiable and its gradient satisfies Lipschitz condition. We proved that under some natural additional conditions algorithm converges with the rate of a geometric progression.
@article{ISU_2013_13_1_a7,
     author = {M. O. Golubev},
     title = {Gradient {Projection} {Algorithm} for {Strongly} {Convex} {Set}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {33--38},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a7/}
}
TY  - JOUR
AU  - M. O. Golubev
TI  - Gradient Projection Algorithm for Strongly Convex Set
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 33
EP  - 38
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a7/
LA  - ru
ID  - ISU_2013_13_1_a7
ER  - 
%0 Journal Article
%A M. O. Golubev
%T Gradient Projection Algorithm for Strongly Convex Set
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 33-38
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a7/
%G ru
%F ISU_2013_13_1_a7
M. O. Golubev. Gradient Projection Algorithm for Strongly Convex Set. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 33-38. http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a7/

[1] Polovinkin E. S., Balashov M. V., Elements of convex and strongly convex analysis, Fizmatlit, Moscow, 2007, 440 pp. | Zbl

[2] Polyak B. T., “Existence theorems and convergence of minimizing sequences in extremal problems with restrictions”, Soviet Math. Dokl., 7 (1966), 72–75

[3] Polyak B. T., Levintin E. S., “Convergence of minimizing sequences in conditional extremum problems”, Soviet Math. Dokl., 7 (1966), 764–-767 | Zbl

[4] Vasilyev F. P., Numerical methods for solving extremal problems, Nauka, Moscow, 1980, 520 pp. | MR | Zbl

[5] Nesterov Yu. E., Introduction to convex optimization, MCCME, M., 2010, 279 pp.

[6] Polyak B. T., Introduction to optimization, Nauka, Moscow, 1983, 384 pp. | MR

[7] Sukharev A. G., Timokhov A. V., Fedorov V. V., Course of optimization methods, Fizmatlit, Moscow, 2005, 368 pp.

[8] Abatzoglou T. J., “The Lipschitz continuity of the metric projection”, J. of Approx. Theory, 26 (1979), 212–218 | DOI | MR | Zbl

[9] Balashov M. V., Golubev M. O., “Lipschitz condition for the metric projection in a Hilbert space”, Proc. of the 54th Conf. of MIPT, v. 1, MIPT, Moscow, 2011, 34

[10] Golubev M. O., “Metric projection in a Hilbert space and strong convexity”, Modern problems of function theory and their applications, Proc. of the 16th Saratov Winter School, Saratov, 2012, 55–56