Gradient Projection Algorithm for Strongly Convex Set
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 33-38

Voir la notice de l'article provenant de la source Math-Net.Ru

In our work we will discuss standard gradient projection algorithm, where a set is strongly convex of radius $R$ and a function is convex, differentiable and its gradient satisfies Lipschitz condition. We proved that under some natural additional conditions algorithm converges with the rate of a geometric progression.
@article{ISU_2013_13_1_a7,
     author = {M. O. Golubev},
     title = {Gradient {Projection} {Algorithm} for {Strongly} {Convex} {Set}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {33--38},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a7/}
}
TY  - JOUR
AU  - M. O. Golubev
TI  - Gradient Projection Algorithm for Strongly Convex Set
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 33
EP  - 38
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a7/
LA  - ru
ID  - ISU_2013_13_1_a7
ER  - 
%0 Journal Article
%A M. O. Golubev
%T Gradient Projection Algorithm for Strongly Convex Set
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 33-38
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a7/
%G ru
%F ISU_2013_13_1_a7
M. O. Golubev. Gradient Projection Algorithm for Strongly Convex Set. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 33-38. http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a7/