Identities of Titchmarsh Type for Generalized Hardy and Hardy--Littlewood Operators
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 28-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Titchmarsh-type theorem on Fourier transforms of Hardy and Hardy-Littlewood operators depending on parameter $\alpha\in (1/2,1]$ is proved.
@article{ISU_2013_13_1_a6,
     author = {S. S. Volosivets},
     title = {Identities of {Titchmarsh} {Type} for {Generalized} {Hardy} and {Hardy--Littlewood} {Operators}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {28--33},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a6/}
}
TY  - JOUR
AU  - S. S. Volosivets
TI  - Identities of Titchmarsh Type for Generalized Hardy and Hardy--Littlewood Operators
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 28
EP  - 33
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a6/
LA  - ru
ID  - ISU_2013_13_1_a6
ER  - 
%0 Journal Article
%A S. S. Volosivets
%T Identities of Titchmarsh Type for Generalized Hardy and Hardy--Littlewood Operators
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 28-33
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a6/
%G ru
%F ISU_2013_13_1_a6
S. S. Volosivets. Identities of Titchmarsh Type for Generalized Hardy and Hardy--Littlewood Operators. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 28-33. http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a6/

[1] Hardy G., Littlewood J., Polya G., Inequalities, Cambridge Univ. Press, Cambridge, 1934, 328 pp.

[2] Krein S. G., Petunin Ju. I., Semenov E. M., Interpolation of linear operators, Amer. Math. Soc., Providence, 1982, 375 pp. | MR | MR

[3] Titchmarsh E., Introduction to the theory of Fourier integrals, Clarendon Press, Oxford, 1948, 404 pp.

[4] Golubov B. I., “On a Bellman theorem on Fourier coefficients”, Russian Academy of Sciences. Sbornik. Mathematics, 83:2 (1995), 321–330 | DOI | MR | Zbl

[5] Moricz F., “The harmonic Cesaro and Copson operators on the spaces $L^p(\mathbb R)$, $1\leq p\leq 2$”, Studia Math., 149:3 (2002), 267–279 | DOI | MR | Zbl

[6] Zygmund A., Trigonometric series, v. 1, Cambridge Univ. Press, Cambridge, 1959, 320 pp. | MR | MR | Zbl