Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2013_13_1_a26, author = {T. N. Shakh-Emirov}, title = {Approximation {Properties} of {Some} {Types} of {Linear} {Means} in {Space} $L^{p(x)}_{2\pi}$}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {108--112}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a26/} }
TY - JOUR AU - T. N. Shakh-Emirov TI - Approximation Properties of Some Types of Linear Means in Space $L^{p(x)}_{2\pi}$ JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2013 SP - 108 EP - 112 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a26/ LA - ru ID - ISU_2013_13_1_a26 ER -
%0 Journal Article %A T. N. Shakh-Emirov %T Approximation Properties of Some Types of Linear Means in Space $L^{p(x)}_{2\pi}$ %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2013 %P 108-112 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a26/ %G ru %F ISU_2013_13_1_a26
T. N. Shakh-Emirov. Approximation Properties of Some Types of Linear Means in Space $L^{p(x)}_{2\pi}$. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 108-112. http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a26/
[1] Sharapudinov I. I., “Some problems in approximation theory by trigonometric polynomials in $L_{2\pi}^{p(x)}$”, Math. Forum (Itogi nauki. The South of Russia), 5 (2011), 108–118
[2] Guven A., Israfilov D. M., “Trigonometric approximation in Generalized Lebesgue spaces Lp(x)”, J. of Math. Inequalities, 4:2 (2010), 285–299 | DOI | MR | Zbl
[3] Chandra P., “Approximation by Nörlund operators”, Mat. Vestnik, 38 (1986), 263–269 | MR | Zbl
[4] Chandra P., “A note on degree of approximation by Nörlund and Riesz operators”, Mat. Vestnik, 42 (1990), 9–10 | MR | Zbl
[5] Diening L., “Maximal function on generalized Lebesgue spaces Lp($\cdot$)”, Math. Inequal. Appl., 7 (2004), 245–253 | MR | Zbl
[6] Kovacik O., Rakosnik J., “On spaces $L^{p(x)}$ and $W^{k,p(x)}$”, Czechoslovak Math. J., 41:4 (1991), 592–618 | MR | Zbl
[7] DeVore R. A., Lorentz G. G., Constructive Approximation, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 303, Springer-Verlag, Berlin, 1993 | DOI | MR | Zbl