Finite Limit Series on Chebyshev Polynomials, Orthogonal on Uniform Nets
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 104-108
Cet article a éte moissonné depuis la source Math-Net.Ru
In the paper we construct new series, called finite limit series on Chebyshev (Hahn) polynomials $\tau^{\alpha,\beta}_n(x)=\tau^{\alpha,\beta}_n(x,N)$, orthogonal on uniform net $\{0,1,\ldots,N-1\}$. Their partial sums $S_n(f;x)$ equal in boundary points $x=0$ и $x=N-1$ with approximated function $f(x)$. Construction of finite limit series based on the passage to the limit with $\alpha\to-1$ of Fourier series $\sum\limits_{k=0}^{N-1}f_k^\alpha \tau_k^{\alpha,\alpha}(x,N)$ on Chebyshev (Hahn) polynomials $\tau_n^{\alpha,\alpha}(x,N)$, orthonormal on uniform net $\{0,1,\ldots,N-1\}$.
@article{ISU_2013_13_1_a25,
author = {T. I. Sharapudinov},
title = {Finite {Limit} {Series} on {Chebyshev} {Polynomials,} {Orthogonal} on {Uniform} {Nets}},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {104--108},
year = {2013},
volume = {13},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a25/}
}
TY - JOUR AU - T. I. Sharapudinov TI - Finite Limit Series on Chebyshev Polynomials, Orthogonal on Uniform Nets JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2013 SP - 104 EP - 108 VL - 13 IS - 1 UR - http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a25/ LA - ru ID - ISU_2013_13_1_a25 ER -
T. I. Sharapudinov. Finite Limit Series on Chebyshev Polynomials, Orthogonal on Uniform Nets. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 104-108. http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a25/
[1] Sharapudinov I. I., Mixed series of orthogonal polynomials. Theory and applications, Dagestan. nauch. center RAN, Makhachkala, 2004, 276 pp.