On Properties of the Moduli of Blocks of the Terms of the Series $\sum \frac{1}{k} \sin kx$
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 92-95
Cet article a éte moissonné depuis la source Math-Net.Ru
A necessary and sufficient condition is obtained ensuring the integrability with the power weight of the sum of the moduli of blocks of the terms of series under investigation.
@article{ISU_2013_13_1_a22,
author = {S. A. Telyakovskii},
title = {On {Properties} of the {Moduli} of {Blocks} of the {Terms} of the {Series} $\sum \frac{1}{k} \sin kx$},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {92--95},
year = {2013},
volume = {13},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a22/}
}
TY - JOUR
AU - S. A. Telyakovskii
TI - On Properties of the Moduli of Blocks of the Terms of the Series $\sum \frac{1}{k} \sin kx$
JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY - 2013
SP - 92
EP - 95
VL - 13
IS - 1
UR - http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a22/
LA - ru
ID - ISU_2013_13_1_a22
ER -
%0 Journal Article
%A S. A. Telyakovskii
%T On Properties of the Moduli of Blocks of the Terms of the Series $\sum \frac{1}{k} \sin kx$
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 92-95
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a22/
%G ru
%F ISU_2013_13_1_a22
S. A. Telyakovskii. On Properties of the Moduli of Blocks of the Terms of the Series $\sum \frac{1}{k} \sin kx$. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 92-95. http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a22/
[1] Telyakovskii S. A., “On properties of blocks of the series $\sum \frac{1}{k} \sin kx$”, Ukrainian Math. J., 64 (2012), 713–718 | DOI | Zbl
[2] Trigub R. M., “A note on the paper of Telyakovskii «Certain properties of Fourier series of functions with bounded variation»”, East J. on Approx., 13:1 (2007), 1–6 | MR