Hermitian Approximation of Two Exponents
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 87-91

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the asymptotic properties of Hermite–Pade approximants $\{\pi_{n,\,m}^j(z;\,e^{\lambda_j\,\xi})\}_{j=1}^2$ for a system consisting of functions $\{e^{\lambda_1 z},e^{\lambda_2 z}\}$. In particular, we determine asymptotic behavior of differences $e^{\lambda_j\,z}-\pi_{n,\,m}^j(z;\,e^{\lambda_j\,\xi})$ for $j=1,2$ and $n\rightarrow\infty$ for any complex number $z$. The obtained results supplement research of Pade, Perron, D. Braess and A. I. Aptekarev dealing with study of the convergence of joinnt Pade approximants for systems of exponents.
@article{ISU_2013_13_1_a21,
     author = {A. P. Starovoitov},
     title = {Hermitian {Approximation} of {Two} {Exponents}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {87--91},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a21/}
}
TY  - JOUR
AU  - A. P. Starovoitov
TI  - Hermitian Approximation of Two Exponents
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 87
EP  - 91
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a21/
LA  - ru
ID  - ISU_2013_13_1_a21
ER  - 
%0 Journal Article
%A A. P. Starovoitov
%T Hermitian Approximation of Two Exponents
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 87-91
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a21/
%G ru
%F ISU_2013_13_1_a21
A. P. Starovoitov. Hermitian Approximation of Two Exponents. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 87-91. http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a21/