Hermitian Approximation of Two Exponents
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 87-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the asymptotic properties of Hermite–Pade approximants $\{\pi_{n,\,m}^j(z;\,e^{\lambda_j\,\xi})\}_{j=1}^2$ for a system consisting of functions $\{e^{\lambda_1 z},e^{\lambda_2 z}\}$. In particular, we determine asymptotic behavior of differences $e^{\lambda_j\,z}-\pi_{n,\,m}^j(z;\,e^{\lambda_j\,\xi})$ for $j=1,2$ and $n\rightarrow\infty$ for any complex number $z$. The obtained results supplement research of Pade, Perron, D. Braess and A. I. Aptekarev dealing with study of the convergence of joinnt Pade approximants for systems of exponents.
@article{ISU_2013_13_1_a21,
     author = {A. P. Starovoitov},
     title = {Hermitian {Approximation} of {Two} {Exponents}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {87--91},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a21/}
}
TY  - JOUR
AU  - A. P. Starovoitov
TI  - Hermitian Approximation of Two Exponents
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 87
EP  - 91
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a21/
LA  - ru
ID  - ISU_2013_13_1_a21
ER  - 
%0 Journal Article
%A A. P. Starovoitov
%T Hermitian Approximation of Two Exponents
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 87-91
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a21/
%G ru
%F ISU_2013_13_1_a21
A. P. Starovoitov. Hermitian Approximation of Two Exponents. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 87-91. http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a21/

[1] Nikishin E. M., Sorokin V. N., Rational approximations and orthogonality, Nauka, Moscow, 1988, 256 pp. | MR | Zbl

[2] Baker G. A. Jr., Graves-Morris P., Pade approximants. Extensions and applications, Encyclopedia Math. Appl., 13–14, Addison-Wesley, Reading, Massachusetts, 1981, 540 pp. | MR | MR

[3] Mahler K., “Perfect systems”, Compositio mathematica, 19:2 (1968), 95–166 | MR | Zbl

[4] Jager H. A., “A multidimensional generalization of the Pade table”, Proc. Nederl. Acad. Wetensh. Ser. A, 67 (1964), 192–249

[5] Nikishin E. M., “A system of Markov functions”, Vestnik Moskov. Univ. Ser. 1. Math. Mech., 1979, no. 4, 60–63 | MR | Zbl

[6] Aptekarev A. I., Lysov V. G., “Systems of Markov functions generated by graphs and the asymptotics of their Hermite–Pade”, Sb. Math., 201:2 (2010), 183–234 | DOI | DOI | MR | Zbl

[7] Aptekarev A. I., Buslaev V. I., Martinez-Finkelshtein A., Suetin S. P., “Pade approximants, continued fractions, and orthogonal polynomials”, Russ. Math. Surv., 66:6 (2011), 1049–1131 | DOI | DOI | MR | Zbl

[8] Hermite C., “Sur la fonction exponentielle”, C. R. Akad. Sci. (Paris), 77 (1873), 18–293

[9] Pade H., “Memoire sur les developpement en fractions continues de la fonction exponential”, Ann Sci. Ecole Normale Sup. (3), 16 (1899), 394–426 | MR

[10] Perron O., Lehre von den Kettenbruchen, Teubner, Stuttgart, 1957, 316 pp. | MR | Zbl

[11] Braess D., “On the conjecture of Meinardus on rational approximation of $e^x$, II”, J. Approx. Theory, 40:4 (1984), 375–379 | DOI | MR | Zbl

[12] Petrusherv P. P., Popov V. A., Rational approximation of real function, University Press, Cambridge, 1987, 401 pp. | MR

[13] Aptekarev A. I., “Convergence of rational approximations to a set of exponents”, Moscow Univ. Math. Bull., 36:1 (1981), 81–86 | MR | Zbl | Zbl

[14] Klein F., Elementary mathematics from the point of view of the highest, v. I, Arithmetic. Algebra. Analysis, Nauka, Moscow, 1987, 432 pp. | MR

[15] Kaljagin V. A., “On a class of polynomials defined by two orthogonality relations”, Math. USSR Sb., 38:4 (1981), 563–580 | DOI | MR