On Birkhoff Interpolation of Functions of Ordered $\Lambda$-bounded Variation
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 81-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

A sufficient condition for the uniform convergence of Lagrange and (0,2,3) Birkhoff interpolation on the whole real line is obtained. The condition is in terms of ordered $\Lambda$-bounded variation.
@article{ISU_2013_13_1_a19,
     author = {V. V. Novikov},
     title = {On {Birkhoff} {Interpolation} of {Functions} of {Ordered} $\Lambda$-bounded {Variation}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {81--83},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a19/}
}
TY  - JOUR
AU  - V. V. Novikov
TI  - On Birkhoff Interpolation of Functions of Ordered $\Lambda$-bounded Variation
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 81
EP  - 83
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a19/
LA  - ru
ID  - ISU_2013_13_1_a19
ER  - 
%0 Journal Article
%A V. V. Novikov
%T On Birkhoff Interpolation of Functions of Ordered $\Lambda$-bounded Variation
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 81-83
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a19/
%G ru
%F ISU_2013_13_1_a19
V. V. Novikov. On Birkhoff Interpolation of Functions of Ordered $\Lambda$-bounded Variation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 81-83. http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a19/

[1] Waterman D., “On convergence of Fourier Series of functions of generalized bounded variation”, Studia Math., 44 (1972), 107–117 | MR | Zbl

[2] Waterman D., “On $\Lambda$-bounded variation”, Studia Math., 57 (1976), 33–45 | MR | Zbl

[3] Waterman D., “$\Lambda$-bounded variation: recent results and unsolved problems”, Real Anal. Exchange, 4 (1978–1979), 69–75

[4] Waterman D., “Fourier series of functions of $\Lambda$-bounded variation”, Proc. Amer. Math. Soc., 74 (1979), 119–123 | MR | Zbl

[5] Belna C. L., “On ordered harmonic bounded variation”, Proc. Amer. Math. Soc., 80 (1980), 441–444 | DOI | MR | Zbl

[6] Prus-Wisniowski F., “On ordered $\Lambda$-bounded variation”, Proc. Amer. Math. Soc., 109 (1990), 375–383 | DOI | MR | Zbl

[7] Waterman D., “On the note of C. L. Belna”, Proc. Amer. Math. Soc., 109 (1980), 375–383 | MR

[8] Kvernadze G., “Uniform Convergence of Lagrange Interpolation Based on the Jacobi Nodes”, J. Approx. Theory, 87 (1996), 179–193 | DOI | MR | Zbl

[9] Lorentz G. G., Jetter K., Riemenshcneider S. D., Birkhoff interpolation, Addison-Wesley, Reading, Massachusetts, 1983, 237 pp. | MR | Zbl

[10] Sharma A., Varma A. K., “Trigonometric interpolation (0,2,3) case”, Ann. Polon. Math., 21 (1968), 51–58 | MR | Zbl

[11] Privalov A. A., “Uniform convergence of Lagrange interpolation processes”, Math. Notes, 39:2 (1986), 124-–133 | DOI | MR | Zbl

[12] Varma A. K., Vertesi P., “Equiconvergence of Some Lacunary Trigonometric Interpolation Polynomials”, J. Approx. Theory, 50 (1987), 185–191 | DOI | MR | Zbl