On Birkhoff Interpolation of Functions of Ordered $\Lambda$-bounded Variation
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 81-83

Voir la notice de l'article provenant de la source Math-Net.Ru

A sufficient condition for the uniform convergence of Lagrange and (0,2,3) Birkhoff interpolation on the whole real line is obtained. The condition is in terms of ordered $\Lambda$-bounded variation.
@article{ISU_2013_13_1_a19,
     author = {V. V. Novikov},
     title = {On {Birkhoff} {Interpolation} of {Functions} of {Ordered} $\Lambda$-bounded {Variation}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {81--83},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a19/}
}
TY  - JOUR
AU  - V. V. Novikov
TI  - On Birkhoff Interpolation of Functions of Ordered $\Lambda$-bounded Variation
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 81
EP  - 83
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a19/
LA  - ru
ID  - ISU_2013_13_1_a19
ER  - 
%0 Journal Article
%A V. V. Novikov
%T On Birkhoff Interpolation of Functions of Ordered $\Lambda$-bounded Variation
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 81-83
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a19/
%G ru
%F ISU_2013_13_1_a19
V. V. Novikov. On Birkhoff Interpolation of Functions of Ordered $\Lambda$-bounded Variation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 81-83. http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a19/