Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2013_13_1_a18, author = {M. G. Magomed-Kasumov}, title = {Convergence of {Fourier--Haar} {Rectangular} {Sums} in {Lebesgue} {Spaces} with {Variable} {Exponent} $L^{p(x,y)}$}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {76--81}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a18/} }
TY - JOUR AU - M. G. Magomed-Kasumov TI - Convergence of Fourier--Haar Rectangular Sums in Lebesgue Spaces with Variable Exponent $L^{p(x,y)}$ JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2013 SP - 76 EP - 81 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a18/ LA - ru ID - ISU_2013_13_1_a18 ER -
%0 Journal Article %A M. G. Magomed-Kasumov %T Convergence of Fourier--Haar Rectangular Sums in Lebesgue Spaces with Variable Exponent $L^{p(x,y)}$ %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2013 %P 76-81 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a18/ %G ru %F ISU_2013_13_1_a18
M. G. Magomed-Kasumov. Convergence of Fourier--Haar Rectangular Sums in Lebesgue Spaces with Variable Exponent $L^{p(x,y)}$. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 76-81. http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a18/
[1] Sharapudinov I. I., “Topology of the space $L^{p(x)}([0,1])$”, Math. Notes, 26:4 (1979), 796–-806 | DOI | MR | Zbl
[2] Sharapudinov I. I., “On the basis property of the Haar system in the space $L^{p(x)}([0,1])$ and the principle of localization in the mean”, Math. USSR Sb., 58:1 (1986), 279–287 | DOI | MR | MR
[3] Kashin B. S., Saakyan A. A., Orthogonal series, AFC, Moscow, 1999, 560 pp. | MR | Zbl
[4] Sobol I. M., Multidimensional quadratic Haar formulas and functions, Nauka, Moscow, 1969, 288 pp. | MR
[5] Hardy G. H., Littlewood J. E., Polya G., Inequalities, University Press, Cambridge, 1934, 329 pp.
[6] Vulih B. Z., Introduction to functional analysis, Nauka, Moscow, 1967, 416 pp. | MR | Zbl