Convergence of Fourier--Haar Rectangular Sums in Lebesgue Spaces with Variable Exponent $L^{p(x,y)}$
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 76-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

Convergence of Fourier–Haar rectangular partial sums in Lebesgue spaces with variable exponent is proved in this paper.
@article{ISU_2013_13_1_a18,
     author = {M. G. Magomed-Kasumov},
     title = {Convergence of {Fourier--Haar} {Rectangular} {Sums} in {Lebesgue} {Spaces} with {Variable} {Exponent} $L^{p(x,y)}$},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {76--81},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a18/}
}
TY  - JOUR
AU  - M. G. Magomed-Kasumov
TI  - Convergence of Fourier--Haar Rectangular Sums in Lebesgue Spaces with Variable Exponent $L^{p(x,y)}$
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 76
EP  - 81
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a18/
LA  - ru
ID  - ISU_2013_13_1_a18
ER  - 
%0 Journal Article
%A M. G. Magomed-Kasumov
%T Convergence of Fourier--Haar Rectangular Sums in Lebesgue Spaces with Variable Exponent $L^{p(x,y)}$
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 76-81
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a18/
%G ru
%F ISU_2013_13_1_a18
M. G. Magomed-Kasumov. Convergence of Fourier--Haar Rectangular Sums in Lebesgue Spaces with Variable Exponent $L^{p(x,y)}$. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 76-81. http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a18/

[1] Sharapudinov I. I., “Topology of the space $L^{p(x)}([0,1])$”, Math. Notes, 26:4 (1979), 796–-806 | DOI | MR | Zbl

[2] Sharapudinov I. I., “On the basis property of the Haar system in the space $L^{p(x)}([0,1])$ and the principle of localization in the mean”, Math. USSR Sb., 58:1 (1986), 279–287 | DOI | MR | MR

[3] Kashin B. S., Saakyan A. A., Orthogonal series, AFC, Moscow, 1999, 560 pp. | MR | Zbl

[4] Sobol I. M., Multidimensional quadratic Haar formulas and functions, Nauka, Moscow, 1969, 288 pp. | MR

[5] Hardy G. H., Littlewood J. E., Polya G., Inequalities, University Press, Cambridge, 1934, 329 pp.

[6] Vulih B. Z., Introduction to functional analysis, Nauka, Moscow, 1967, 416 pp. | MR | Zbl