Boundary Control Problem for the Hyperbolic System
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 51-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

A boundary control problem for the hyperbolic system was considered. The control functions transferring the object described by this system from the given initial state to the final state were constructed using the Riemann method.
@article{ISU_2013_13_1_a12,
     author = {E. A. Kozlova},
     title = {Boundary {Control} {Problem} for the {Hyperbolic} {System}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {51--56},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a12/}
}
TY  - JOUR
AU  - E. A. Kozlova
TI  - Boundary Control Problem for the Hyperbolic System
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 51
EP  - 56
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a12/
LA  - ru
ID  - ISU_2013_13_1_a12
ER  - 
%0 Journal Article
%A E. A. Kozlova
%T Boundary Control Problem for the Hyperbolic System
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 51-56
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a12/
%G ru
%F ISU_2013_13_1_a12
E. A. Kozlova. Boundary Control Problem for the Hyperbolic System. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 51-56. http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a12/

[1] Butkovskiy A. G., Distributed Control Systems, American Elsevier Pub. Co., New York, 1969, 446 pp. | MR | MR | Zbl

[2] Lions J.-L., Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles, Dunod Gauthier-Villars, Paris, 1968, 426 pp. | MR

[3] Agoshkov V. I., Optimal control methods and the method of adjoint equations in problems of mathematical physics, Inst. Vych. Mat. RAN, Moscow, 2003, 256 pp. | MR | Zbl

[4] Il'in V. A., “Two-endpoint boundary control of vibrations described by a finite-energy generalized solution of the wave equation”, Differ. Equ., 36:11 (2000), 1659–1675 | DOI | MR | Zbl

[5] Il'in V. A., “Boundary control of the string oscillation process at two ends under conditions of the existence of a finite energy”, Dokl. Math., 63:1 (2001), 38–41 | MR | Zbl

[6] Il'in V. A., Moiseev E. I., “Optimization of the boundary control of string vibrations by an elastic force on an arbitrary sufficiently large time interval”, Differ. Equ., 42:12 (2006), 1775–1786 | DOI | MR | Zbl

[7] Il'in V. A., Moiseev E. I., “Optimization of boundary controls by displacements at two ends of a string during an arbitrary sufficiently large time interval”, Dokl. Math., 76:3 (2007), 828–834 | DOI | MR | Zbl

[8] Borovskikh A. V., “Formulas of boundary control of an inhomogeneous string, I”, Differ. Equ., 43:1 (2007), 69–95 | DOI | MR | Zbl

[9] Il'in V. A., Moiseev E. I., “A boundary control of radially symmetric oscillations of a round membrane”, Dokl. Math., 68:3 (2003), 421–425 | MR

[10] Il'in V. A., Moiseev E. I., “A boundary control at two ends by a process described by the telegraph equation”, Dokl. Math., 69:1 (2004), 33–37 | MR | Zbl

[11] Andreev A. A., Leksina S. V., “The boundary control problem for the system of wave equations”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2008, no. 1(16), 5–10 | DOI | MR

[12] Andreev A. A., Leksina S. V., “Boundary control problem for the first boundary value problem for a second-order system of hyperbolic type”, Differ. Equ., 47:6 (2011), 848–854 | DOI | MR | Zbl

[13] Lancaster P., Theory of matrices, Acad. Press, New York, 1969, 316 pp. | MR | Zbl

[14] Bitsadze A. V., Some Classes of Partial Differential Equations, Gordon and Breach Science Publishers, New York, 1988 | MR | MR | Zbl

[15] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. I, ed. H. Bateman, McGraw-Hill Book Co., Inc., New York–Toronto–London, 1953, 302 pp.