Mathematical model of dynamic chaos
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 4, pp. 27-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of analytical designing on the set mathematical model of dynamic system in space of states of mathematical model accompanying it in phase space is put and solved. It is shown, that the representing point of any decision of dynamic system of a general view in space of states conditions belongs to hypersphere with the displaced centre in phase space (or to central hypersphere of variable radius equivalent to it). Analytical representation of the centre of the displacement, an explaining origin of dynamic chaos by infinite ruptures of the second sort in co-ordinates of the centre of displacement is designed. It is shown, that these ruptures are generated by transition through a zero corresponding a component of a vector of states.
@article{ISU_2012_12_4_a4,
     author = {V. A. Podchukaev},
     title = {Mathematical model of dynamic chaos},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {27--31},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a4/}
}
TY  - JOUR
AU  - V. A. Podchukaev
TI  - Mathematical model of dynamic chaos
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2012
SP  - 27
EP  - 31
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a4/
LA  - ru
ID  - ISU_2012_12_4_a4
ER  - 
%0 Journal Article
%A V. A. Podchukaev
%T Mathematical model of dynamic chaos
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2012
%P 27-31
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a4/
%G ru
%F ISU_2012_12_4_a4
V. A. Podchukaev. Mathematical model of dynamic chaos. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 4, pp. 27-31. http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a4/

[1] Kuznetsov S. P., Dinamicheskii khaos, Fizmatlit, M., 2006, 294 pp.

[2] Podchukaev V. A., Analiticheskie metody teorii avtomatichekogo upravleniya, Fizmatlit, M., 2002, 256 pp.

[3] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984, 320 pp. | MR | Zbl

[4] Penzov Yu. E., Analiticheskaya geometriya, Izd-vo Sarat. un-ta, Saratov, 1972, 364 pp. | MR

[5] Podchukaev V. A., Zvyagina A. S., “Novoe dokazatelstvo gipotezy Zh. A. Puankare”, Dokl. Akademii voen. nauk, 2009, no. 5(40), 115–123

[6] Bronshtein I. N., Semendyaev K. A., Spravochnik po matematike dlya inzhenerov i uchaschikhsya vtuzov, Nauka, M., 1986, 544 pp.