Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2012_12_4_a15, author = {A. A. Tyrymov}, title = {Graph approach for finite-element based model of an elastic body under conditions of axisymmetric deformation}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {96--106}, publisher = {mathdoc}, volume = {12}, number = {4}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a15/} }
TY - JOUR AU - A. A. Tyrymov TI - Graph approach for finite-element based model of an elastic body under conditions of axisymmetric deformation JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2012 SP - 96 EP - 106 VL - 12 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a15/ LA - ru ID - ISU_2012_12_4_a15 ER -
%0 Journal Article %A A. A. Tyrymov %T Graph approach for finite-element based model of an elastic body under conditions of axisymmetric deformation %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2012 %P 96-106 %V 12 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a15/ %G ru %F ISU_2012_12_4_a15
A. A. Tyrymov. Graph approach for finite-element based model of an elastic body under conditions of axisymmetric deformation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 4, pp. 96-106. http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a15/
[1] Fletcher K., Chislennye metody na osnove metoda Galerkina, Mir, M., 1988, 352 pp.
[2] Gallager R., Metod konechnykh elementov. Osnovy, Mir, M., 1984, 428 pp. | MR
[3] Kuzovkov E. G., Tyrymov A. A., “Grafovaya model uprugoi sredy v osesimmetrichnoi postanovke”, Modelirovanie v mekhanike, Sb. nauch. tr., 4(21), no. 6, Izd-vo SO AN SSSR, Novosibirsk, 1990, 103–109
[4] Kuzovkov E. G., “Axisymmetric Graph Model of an Elastic Solid”, Strength of Materials, 28:6 (1996), 470–485 | DOI
[5] Tyrymov A. A., “Treugolnyi element grafovoi modeli dlya osesimmetrichnoi zadachi teorii uprugosti”, Chislennye metody resheniya zadach teorii uprugosti i plastichnosti, Tr. XVIII Mezhresp. konf. (Kemerovo, 1–3 iyulya 2003 g.), ed. V. M. Fomin, Nonparel, Novosibirsk, 2003, 187–191
[6] Tyrymov A. A., “Singulyarnyi element grafovoi modeli uprugoi sredy v dekartovoi sisteme koordinat”, Vychislitelnaya mekhanika sploshnykh sred, 4:4 (2011), 125–136
[7] Trent H., “Isomorphism between Oriented Linear Graphs and Lumped Physical Systems”, J. of the Acoustical Soc. of America, 27:3 (1955), 500–527 | DOI | MR
[8] Kron G., Issledovanie slozhnykh sistem po chastyam – diakoptika, Nauka, M., 1972, 542 pp.
[9] Svami M., Tkhulasiraman K., Grafy, seti i algoritmy, Mir, M., 1984, 454 pp.
[10] Belkin A. E., Gavryushin S. S., Raschet plastin metodom konechnykh elementov, Izd-vo MGTU im. N. E. Baumana, M., 2008, 232 pp.
[11] Morley L. S. D., “The constant-moment plate-bending element”, J. Strain Anal., 6:1 (1971), 20–24 | DOI
[12] Bazeley G. P., Cheung Y. K., Irons B. M., Zienkiewicz O. C., “Triangular elements in plate bending – conforming and non-conforming solutions”, Proc. Conf. on Matrix Methods in Structural Mechanics, Wright-Patterson Air Force Base, Ohio, 1965, 547–576
[13] Batoz J. L., Bathe K. J., Ho L. W., “A study of three-node triangular plate bending elements”, Intern. J. for Numerical Methods in Engineering, 15 (1980), 1771–1812 | DOI | Zbl
[14] Nemish Yu. N., Elementy mekhaniki kusochno-odnorodnykh tel s nekanonicheskimi poverkhnostyami razdela, Nauk. dumka, Kiev, 1989, 312 pp. | MR | Zbl