Graph approach for finite-element based model of an elastic body under conditions of axisymmetric deformation
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 4, pp. 96-106

Voir la notice de l'article provenant de la source Math-Net.Ru

A numerical method for analysis of the stress – strain state of elastic media based on a discrete model in form of directed graph is suggested. To analyze a deformable body using the graph approach, we partitione a solid body on elements and replace each element by its model in the form of an elementary cell. The matrices, presenting several structure elements of the graph, and the equations, describing the elementary cells, contribute to deriving the constitutive equations of the intact body. Numerical examples are presented.
@article{ISU_2012_12_4_a15,
     author = {A. A. Tyrymov},
     title = {Graph approach for finite-element based model of an elastic body under conditions of axisymmetric deformation},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {96--106},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a15/}
}
TY  - JOUR
AU  - A. A. Tyrymov
TI  - Graph approach for finite-element based model of an elastic body under conditions of axisymmetric deformation
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2012
SP  - 96
EP  - 106
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a15/
LA  - ru
ID  - ISU_2012_12_4_a15
ER  - 
%0 Journal Article
%A A. A. Tyrymov
%T Graph approach for finite-element based model of an elastic body under conditions of axisymmetric deformation
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2012
%P 96-106
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a15/
%G ru
%F ISU_2012_12_4_a15
A. A. Tyrymov. Graph approach for finite-element based model of an elastic body under conditions of axisymmetric deformation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 4, pp. 96-106. http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a15/