Graph approach for finite-element based model of an elastic body under conditions of axisymmetric deformation
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 4, pp. 96-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

A numerical method for analysis of the stress – strain state of elastic media based on a discrete model in form of directed graph is suggested. To analyze a deformable body using the graph approach, we partitione a solid body on elements and replace each element by its model in the form of an elementary cell. The matrices, presenting several structure elements of the graph, and the equations, describing the elementary cells, contribute to deriving the constitutive equations of the intact body. Numerical examples are presented.
@article{ISU_2012_12_4_a15,
     author = {A. A. Tyrymov},
     title = {Graph approach for finite-element based model of an elastic body under conditions of axisymmetric deformation},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {96--106},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a15/}
}
TY  - JOUR
AU  - A. A. Tyrymov
TI  - Graph approach for finite-element based model of an elastic body under conditions of axisymmetric deformation
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2012
SP  - 96
EP  - 106
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a15/
LA  - ru
ID  - ISU_2012_12_4_a15
ER  - 
%0 Journal Article
%A A. A. Tyrymov
%T Graph approach for finite-element based model of an elastic body under conditions of axisymmetric deformation
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2012
%P 96-106
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a15/
%G ru
%F ISU_2012_12_4_a15
A. A. Tyrymov. Graph approach for finite-element based model of an elastic body under conditions of axisymmetric deformation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 4, pp. 96-106. http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a15/

[1] Fletcher K., Chislennye metody na osnove metoda Galerkina, Mir, M., 1988, 352 pp.

[2] Gallager R., Metod konechnykh elementov. Osnovy, Mir, M., 1984, 428 pp. | MR

[3] Kuzovkov E. G., Tyrymov A. A., “Grafovaya model uprugoi sredy v osesimmetrichnoi postanovke”, Modelirovanie v mekhanike, Sb. nauch. tr., 4(21), no. 6, Izd-vo SO AN SSSR, Novosibirsk, 1990, 103–109

[4] Kuzovkov E. G., “Axisymmetric Graph Model of an Elastic Solid”, Strength of Materials, 28:6 (1996), 470–485 | DOI

[5] Tyrymov A. A., “Treugolnyi element grafovoi modeli dlya osesimmetrichnoi zadachi teorii uprugosti”, Chislennye metody resheniya zadach teorii uprugosti i plastichnosti, Tr. XVIII Mezhresp. konf. (Kemerovo, 1–3 iyulya 2003 g.), ed. V. M. Fomin, Nonparel, Novosibirsk, 2003, 187–191

[6] Tyrymov A. A., “Singulyarnyi element grafovoi modeli uprugoi sredy v dekartovoi sisteme koordinat”, Vychislitelnaya mekhanika sploshnykh sred, 4:4 (2011), 125–136

[7] Trent H., “Isomorphism between Oriented Linear Graphs and Lumped Physical Systems”, J. of the Acoustical Soc. of America, 27:3 (1955), 500–527 | DOI | MR

[8] Kron G., Issledovanie slozhnykh sistem po chastyam – diakoptika, Nauka, M., 1972, 542 pp.

[9] Svami M., Tkhulasiraman K., Grafy, seti i algoritmy, Mir, M., 1984, 454 pp.

[10] Belkin A. E., Gavryushin S. S., Raschet plastin metodom konechnykh elementov, Izd-vo MGTU im. N. E. Baumana, M., 2008, 232 pp.

[11] Morley L. S. D., “The constant-moment plate-bending element”, J. Strain Anal., 6:1 (1971), 20–24 | DOI

[12] Bazeley G. P., Cheung Y. K., Irons B. M., Zienkiewicz O. C., “Triangular elements in plate bending – conforming and non-conforming solutions”, Proc. Conf. on Matrix Methods in Structural Mechanics, Wright-Patterson Air Force Base, Ohio, 1965, 547–576

[13] Batoz J. L., Bathe K. J., Ho L. W., “A study of three-node triangular plate bending elements”, Intern. J. for Numerical Methods in Engineering, 15 (1980), 1771–1812 | DOI | Zbl

[14] Nemish Yu. N., Elementy mekhaniki kusochno-odnorodnykh tel s nekanonicheskimi poverkhnostyami razdela, Nauk. dumka, Kiev, 1989, 312 pp. | MR | Zbl