Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2012_12_4_a12, author = {V. A. Kovalev and Yu. N. Radayev}, title = {On precisely conserved quantities of coupled micropolar thermoelastic field}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {71--79}, publisher = {mathdoc}, volume = {12}, number = {4}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a12/} }
TY - JOUR AU - V. A. Kovalev AU - Yu. N. Radayev TI - On precisely conserved quantities of coupled micropolar thermoelastic field JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2012 SP - 71 EP - 79 VL - 12 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a12/ LA - ru ID - ISU_2012_12_4_a12 ER -
%0 Journal Article %A V. A. Kovalev %A Yu. N. Radayev %T On precisely conserved quantities of coupled micropolar thermoelastic field %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2012 %P 71-79 %V 12 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a12/ %G ru %F ISU_2012_12_4_a12
V. A. Kovalev; Yu. N. Radayev. On precisely conserved quantities of coupled micropolar thermoelastic field. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 4, pp. 71-79. http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a12/
[1] Kovalev V. A., Radaev Yu. N., Elementy teorii polya: variatsionnye simmetrii i geometricheskie invarianty, Fizmatlit, M., 2009, 156 pp.
[2] Truesdell C., Toupin R. A., “The Classical Field Theories”, Principles of Classical Mechanics and Field Theory, Encyclopedia of Physics, III/1, ed. S. Flügge, Springer, Berlin–Göttingen–Heidelberg, 1960, 226–793 | MR
[3] Cosserat E., Cosserat F., Théorie des corps déformables, Librairie Scientifique A. Hermann et Fils, Paris, 1909, 226 pp. | Zbl
[4] Toupin R. A., “Theories of Elasticity with Couple-Stress”, Arch. Rational Mech. Anal., 17:5 (1964), 85–112 | MR | Zbl
[5] Kovalev V. A., Melnikov A. D., Radaev Yu. N., “O giperbolicheskikh uravneniyakh svyazannogo mikropolyarnogo termouprugogo polya”, Matematicheskaya fizika i ee prilozheniya, Materialy Vtoroi mezhdunar. konf., eds. chl.-korr. RAN I. V. Volovich, d-r fiz.-mat. nauk, prof. Yu. N. Radaev, Kniga, Samara, 2010, 156–164
[6] Kovalev V. A., Radaev Yu. N., Volnovye zadachi teorii polya i termomekhanika, Izd-vo Sarat. un-ta, Saratov, 2010, 328 pp.
[7] Kovalev V. A., Radaev Yu. N., “Vyvod tenzorov energii–impulsa v teoriyakh mikropolyarnoi giperbolicheskoi termouprugosti”, Izv. RAN. MTT, 2011, no. 5, 58–77
[8] Kovalev V. A., Radaev Yu. N., “O nekotorykh novykh napravleniyakh razvitiya polevykh teorii mekhaniki sploshnykh sred”, V sessiya Nauchnogo soveta RAN po mekhanike deformiruemogo tverdogo tela, Tez. dokl. Vseros. konf. (31 maya – 5 iyunya, 2011 g., Astrakhan, Rossiya), Izd-vo AGTU, Astrakhan, 2011, 26–28
[9] Radaev Yu. N., “Giperbolicheskie teorii i zadachi mekhaniki deformiruemogo tverdogo tela”, Sovremennye problemy mekhaniki, Tez. dokl. mezhdunar. konf., posvyasch. 100-letiyu L. A. Galina, M., 2012, 75–76
[10] Kovalev V. A., Radaev Yu. N., “Teoretiko-polevye formulirovki i modeli nelineinoi giperbolicheskoi mikropolyarnoi termouprugosti”, XXXVI Dalnevostochnaya matematicheskaya shkola-seminar im. akad. E. V. Zolotova (4–10 sentyabrya 2012 g., Vladivostok), Cb. dokl., IAPU DVO RAN, Vladivostok, 2012, 137–142
[11] Noether E., “Invariante Variationsprobleme”, Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse, 2 (1918), 235–257; Neter E., “Invariantnye variatsionnye zadachi”, Variatsionnye printsipy mekhaniki, Fizmatgiz, M., 1959, 611–630