On precisely conserved quantities of coupled micropolar thermoelastic field
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 4, pp. 71-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the $4$-covariant formulation in fourdimensional space-time of dynamics of non-linear hyperbolic micropolar thermoelastic continuum. Theory ofmicropolar continuum are due to E. Cosserat and F. Cosserat and their study of 1909. The complement microdeformations and microrotations of an element are described by a non-rigid trihedron (the case of deformable micropolar directors). Hyperbolic micropolar type-II thermoelastic continuum is considered as a physical field theory with the action density taking account of wave nature of heat transport (the second sound phenomenon in solids) according to the Green type-II model. The principle of the least action for a micropolar thermoelastic field is formulated. The canonical Euler–Lagrange field equations are derived from the principle of least action. These equations include a hyperbolic heat transport equation. Currents corresponding $4$-translations and $4$-rotations of the four-dimensional space-time are obtained. The $4$-covariant representations are rewritten in threedimensional forms as usual for continuum mechanics. The currents are required in order to formulate conservation laws particularly the conservation of energy. The latter may be represented as path- or surface-independent integrals known from the continuum mechanics and often used in applied problems. Regular explicit covariant formulae for the field current are obtained provided the symmetry group of the variational action functional is known. Explicit covariant formulae for the canonical energy-momentum and angular momentum tensors are also given. Precisely conserved quantities (among them the total canonical angular momentum) for a micropolar thermoelastic field are discussed.
@article{ISU_2012_12_4_a12,
     author = {V. A. Kovalev and Yu. N. Radayev},
     title = {On precisely conserved quantities of coupled micropolar thermoelastic field},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {71--79},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a12/}
}
TY  - JOUR
AU  - V. A. Kovalev
AU  - Yu. N. Radayev
TI  - On precisely conserved quantities of coupled micropolar thermoelastic field
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2012
SP  - 71
EP  - 79
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a12/
LA  - ru
ID  - ISU_2012_12_4_a12
ER  - 
%0 Journal Article
%A V. A. Kovalev
%A Yu. N. Radayev
%T On precisely conserved quantities of coupled micropolar thermoelastic field
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2012
%P 71-79
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a12/
%G ru
%F ISU_2012_12_4_a12
V. A. Kovalev; Yu. N. Radayev. On precisely conserved quantities of coupled micropolar thermoelastic field. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 4, pp. 71-79. http://geodesic.mathdoc.fr/item/ISU_2012_12_4_a12/

[1] Kovalev V. A., Radaev Yu. N., Elementy teorii polya: variatsionnye simmetrii i geometricheskie invarianty, Fizmatlit, M., 2009, 156 pp.

[2] Truesdell C., Toupin R. A., “The Classical Field Theories”, Principles of Classical Mechanics and Field Theory, Encyclopedia of Physics, III/1, ed. S. Flügge, Springer, Berlin–Göttingen–Heidelberg, 1960, 226–793 | MR

[3] Cosserat E., Cosserat F., Théorie des corps déformables, Librairie Scientifique A. Hermann et Fils, Paris, 1909, 226 pp. | Zbl

[4] Toupin R. A., “Theories of Elasticity with Couple-Stress”, Arch. Rational Mech. Anal., 17:5 (1964), 85–112 | MR | Zbl

[5] Kovalev V. A., Melnikov A. D., Radaev Yu. N., “O giperbolicheskikh uravneniyakh svyazannogo mikropolyarnogo termouprugogo polya”, Matematicheskaya fizika i ee prilozheniya, Materialy Vtoroi mezhdunar. konf., eds. chl.-korr. RAN I. V. Volovich, d-r fiz.-mat. nauk, prof. Yu. N. Radaev, Kniga, Samara, 2010, 156–164

[6] Kovalev V. A., Radaev Yu. N., Volnovye zadachi teorii polya i termomekhanika, Izd-vo Sarat. un-ta, Saratov, 2010, 328 pp.

[7] Kovalev V. A., Radaev Yu. N., “Vyvod tenzorov energii–impulsa v teoriyakh mikropolyarnoi giperbolicheskoi termouprugosti”, Izv. RAN. MTT, 2011, no. 5, 58–77

[8] Kovalev V. A., Radaev Yu. N., “O nekotorykh novykh napravleniyakh razvitiya polevykh teorii mekhaniki sploshnykh sred”, V sessiya Nauchnogo soveta RAN po mekhanike deformiruemogo tverdogo tela, Tez. dokl. Vseros. konf. (31 maya – 5 iyunya, 2011 g., Astrakhan, Rossiya), Izd-vo AGTU, Astrakhan, 2011, 26–28

[9] Radaev Yu. N., “Giperbolicheskie teorii i zadachi mekhaniki deformiruemogo tverdogo tela”, Sovremennye problemy mekhaniki, Tez. dokl. mezhdunar. konf., posvyasch. 100-letiyu L. A. Galina, M., 2012, 75–76

[10] Kovalev V. A., Radaev Yu. N., “Teoretiko-polevye formulirovki i modeli nelineinoi giperbolicheskoi mikropolyarnoi termouprugosti”, XXXVI Dalnevostochnaya matematicheskaya shkola-seminar im. akad. E. V. Zolotova (4–10 sentyabrya 2012 g., Vladivostok), Cb. dokl., IAPU DVO RAN, Vladivostok, 2012, 137–142

[11] Noether E., “Invariante Variationsprobleme”, Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse, 2 (1918), 235–257; Neter E., “Invariantnye variatsionnye zadachi”, Variatsionnye printsipy mekhaniki, Fizmatgiz, M., 1959, 611–630