The asymptotic separation of variables in thermoelastic problem for anisotropic layer with inhomogeneous boundary conditions
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 3, pp. 50-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for resolving a thermoelasticity problem with inhomogeneous boundary conditions is presented. Boundary conditions represent uneven surface heating of the layer. An asymptotic procedure for separation of variables based on introduction of additional dimensional scales is used. With an additional assumption that the unevenness of the heating is small enough this procedure makes it possible to obtain the solution. The method is shown for periodic heating case. After the separation of variables the solution is obtained using Fourier series.
@article{ISU_2012_12_3_a7,
     author = {V. A. Vestyak and A. V. Zemskov and I. A. Fedorov},
     title = {The asymptotic separation of variables in thermoelastic problem for anisotropic layer with inhomogeneous boundary conditions},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {50--56},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a7/}
}
TY  - JOUR
AU  - V. A. Vestyak
AU  - A. V. Zemskov
AU  - I. A. Fedorov
TI  - The asymptotic separation of variables in thermoelastic problem for anisotropic layer with inhomogeneous boundary conditions
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2012
SP  - 50
EP  - 56
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a7/
LA  - ru
ID  - ISU_2012_12_3_a7
ER  - 
%0 Journal Article
%A V. A. Vestyak
%A A. V. Zemskov
%A I. A. Fedorov
%T The asymptotic separation of variables in thermoelastic problem for anisotropic layer with inhomogeneous boundary conditions
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2012
%P 50-56
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a7/
%G ru
%F ISU_2012_12_3_a7
V. A. Vestyak; A. V. Zemskov; I. A. Fedorov. The asymptotic separation of variables in thermoelastic problem for anisotropic layer with inhomogeneous boundary conditions. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 3, pp. 50-56. http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a7/

[1] Vestyak V. A., Zemskov A. V., Fedotenkov G. V., “Slabo neravnomernyi nagrev neogranichennoi sloistoi plastiny”, Vestn. MAI, 17:6 (2010), 152–158

[2] Zemskov A. V., Erikhman N. N., “Priblizhënnoe reshenie nestatsionarnoi zadachi o nagreve ortotropnoi plastiny”, Problemi obchislyuvalnoi mekhaniki I mitsnosti konstruktsii, zbirnik naukovikh prats, 13, Dnipropetrovskii natsionalnii universitet, Dnipropetrovsk, 2009, 94–99

[3] Gorshkov A. G., Tarlakovskii D. V., Dinamicheskie kontaktnye zadachi s podvizhnymi granitsami, Nauka, Fizmatlit, M., 1995, 352 pp. | MR | Zbl

[4] Ilyushin A. A., Mekhanika sploshnoi sredy, uchebnik, 2-e izd., pererab. i dop., Izd-vo Mosk. un-ta, M., 1978, 287 pp.

[5] Morgunov B. I., Matematicheskii analiz fiziko-mekhanicheskikh protsessov, MIEM, M., 1995, 151 pp.

[6] Morgunov B. I., Matematicheskoe modelirovanie svyazannykh fizicheskikh protsessov, MIEM, M., 1997, 224 pp.

[7] Novatskii V., Dinamicheskie zadachi termouprugosti, per. s polsk. Ya. Rykhlevskogo, ed. G. S. Shapiro, Mir, M., 1970, 256 pp.

[8] Sedov L. I., Mekhanika sploshnoi sredy, v 2 t., v. 1, Nauka, M., 1973, 536 pp.

[9] Vestyak V. A., Lemeshev V. A., Tarlakovskii D. V., “Rasprostranenie nestatsionarnykh radialnykh vozmuschenii ot sfericheskoi polosti v elektromagnitouprugom prostranstve”, Dokl. AN, 434:2 (2010), 186–188

[10] Samarskii A. A., Tikhonov A. N., Matematicheskoe modelirovanie svyazannykh fizicheskikh protsessov, Gl. red. fiz.-mat. lit. izd-va “Nauka”, M., 1977, 736 pp.