Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2012_12_3_a7, author = {V. A. Vestyak and A. V. Zemskov and I. A. Fedorov}, title = {The asymptotic separation of variables in thermoelastic problem for anisotropic layer with inhomogeneous boundary conditions}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {50--56}, publisher = {mathdoc}, volume = {12}, number = {3}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a7/} }
TY - JOUR AU - V. A. Vestyak AU - A. V. Zemskov AU - I. A. Fedorov TI - The asymptotic separation of variables in thermoelastic problem for anisotropic layer with inhomogeneous boundary conditions JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2012 SP - 50 EP - 56 VL - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a7/ LA - ru ID - ISU_2012_12_3_a7 ER -
%0 Journal Article %A V. A. Vestyak %A A. V. Zemskov %A I. A. Fedorov %T The asymptotic separation of variables in thermoelastic problem for anisotropic layer with inhomogeneous boundary conditions %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2012 %P 50-56 %V 12 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a7/ %G ru %F ISU_2012_12_3_a7
V. A. Vestyak; A. V. Zemskov; I. A. Fedorov. The asymptotic separation of variables in thermoelastic problem for anisotropic layer with inhomogeneous boundary conditions. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 3, pp. 50-56. http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a7/
[1] Vestyak V. A., Zemskov A. V., Fedotenkov G. V., “Slabo neravnomernyi nagrev neogranichennoi sloistoi plastiny”, Vestn. MAI, 17:6 (2010), 152–158
[2] Zemskov A. V., Erikhman N. N., “Priblizhënnoe reshenie nestatsionarnoi zadachi o nagreve ortotropnoi plastiny”, Problemi obchislyuvalnoi mekhaniki I mitsnosti konstruktsii, zbirnik naukovikh prats, 13, Dnipropetrovskii natsionalnii universitet, Dnipropetrovsk, 2009, 94–99
[3] Gorshkov A. G., Tarlakovskii D. V., Dinamicheskie kontaktnye zadachi s podvizhnymi granitsami, Nauka, Fizmatlit, M., 1995, 352 pp. | MR | Zbl
[4] Ilyushin A. A., Mekhanika sploshnoi sredy, uchebnik, 2-e izd., pererab. i dop., Izd-vo Mosk. un-ta, M., 1978, 287 pp.
[5] Morgunov B. I., Matematicheskii analiz fiziko-mekhanicheskikh protsessov, MIEM, M., 1995, 151 pp.
[6] Morgunov B. I., Matematicheskoe modelirovanie svyazannykh fizicheskikh protsessov, MIEM, M., 1997, 224 pp.
[7] Novatskii V., Dinamicheskie zadachi termouprugosti, per. s polsk. Ya. Rykhlevskogo, ed. G. S. Shapiro, Mir, M., 1970, 256 pp.
[8] Sedov L. I., Mekhanika sploshnoi sredy, v 2 t., v. 1, Nauka, M., 1973, 536 pp.
[9] Vestyak V. A., Lemeshev V. A., Tarlakovskii D. V., “Rasprostranenie nestatsionarnykh radialnykh vozmuschenii ot sfericheskoi polosti v elektromagnitouprugom prostranstve”, Dokl. AN, 434:2 (2010), 186–188
[10] Samarskii A. A., Tikhonov A. N., Matematicheskoe modelirovanie svyazannykh fizicheskikh protsessov, Gl. red. fiz.-mat. lit. izd-va “Nauka”, M., 1977, 736 pp.