Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2012_12_3_a2, author = {A. V. Bukusheva and S. V. Galaev}, title = {Almost contact metric structures defined by connection over distribution with admissible {Finslerian} metric}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {17--22}, publisher = {mathdoc}, volume = {12}, number = {3}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a2/} }
TY - JOUR AU - A. V. Bukusheva AU - S. V. Galaev TI - Almost contact metric structures defined by connection over distribution with admissible Finslerian metric JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2012 SP - 17 EP - 22 VL - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a2/ LA - ru ID - ISU_2012_12_3_a2 ER -
%0 Journal Article %A A. V. Bukusheva %A S. V. Galaev %T Almost contact metric structures defined by connection over distribution with admissible Finslerian metric %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2012 %P 17-22 %V 12 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a2/ %G ru %F ISU_2012_12_3_a2
A. V. Bukusheva; S. V. Galaev. Almost contact metric structures defined by connection over distribution with admissible Finslerian metric. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 3, pp. 17-22. http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a2/
[1] Bukusheva A. V., Galaev S. V., Ivanchenko I. P., “O pochti kontaktnykh metricheskikh strukturakh, opredelyaemykh svyaznostyu nad raspredeleniem s finslerovoi metrikoi”, Matematika. Mekhanika: sb. nauch. tr., 13, Izd-vo Sarat. un-ta, Saratov, 2011, 10–14 | MR
[2] Galaev S. V., “O prodolzhenii vnutrennei svyaznosti negolonomnogo mnogoobraziya s finslerovoi metrikoi”, Matematika. Mekhanika: sb. nauch. tr., 13, Izd-vo Sarat. un-ta, Saratov, 2011, 25–28
[3] Miron R., “Techniques of Finsler geometry in the theory of vector bundles”, Acta Sci. Math., 49 (1985), 119–129 | MR | Zbl
[4] Sai Prasad K., “Quarter symmetric metric Finsler connections on Kenmotsu and P-Kenmotsu vector bundles”, Intern. Math. Forum, 3:18 (2008), 847–855 | MR | Zbl
[5] Galaev S. V., “Contact structures with admissible Finsler metrics”, Physical Interpretation of Relativity Theory, Proceedings of Intern. Meeting (Moscow, 4–7 July 2011), BMSTU, Moscow, 2012, 80–87
[6] Chern S. S., “Pseudogroupes continus infinis”, Colloques Internat. Centre Nat. Rech. Sci., 52 (1953), 119–136 | MR | Zbl
[7] Gray J. W., “Some global properties of contact structures”, Ann. of Math., 69:2 (1959), 421–450 | DOI | MR | Zbl
[8] Sasaki S., “On differentiable manifolds with certain structures which are closely related to almost contact structure”, Tôhoku Math. J. Second Series, 12:3 (1960), 459–476 | DOI | MR | Zbl
[9] Blair D. E., Contact manifolds in Riemannian geometry, Springer-Verlag, Berlin–N.Y., 1976, 146 pp. | MR | Zbl
[10] Kirichenko V. F., “Metody obobschennoi ermitovoi geometrii v teorii pochti kontaktnykh mnogoobrazii”, Itogi nauki i tekhniki. Ser. Probl. geom., 18, VINITI, 1986, 25–71 | MR | Zbl
[11] Kirichenko V. F., Rustanov A. R., “Differentsialnaya geometriya kvazi-sasakievykh mnogoobrazii”, Mat. sb., 193:8 (2002), 71–100 | DOI | MR | Zbl
[12] Galaev S. V., “Vnutrennyaya geometriya metricheskikh pochti kontaktnykh mnogoobrazovanii”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 12:1 (2012), 16–22
[13] Vagner V. V., Differentsialnaya geometriya negolonomnykh mnogoobrazii, VIII Mezhdunar. konkurs im. N. I. Lobachevskogo (1937), Otchët, Kazan. fiz.-mat. obsch-vo, Kazan, 1940, 327 pp.
[14] Vagner V. V., “Geometriya $(n-1)$-mernogo negolonomnogo mnogoobraziya v $n$-mernom prostranstve”, Tr. seminara po vektornomu i tenzornomu analizu, 5, Izd-vo Mosk. un-ta, M., 1941, 173–255 | MR
[15] Bejancu A., “Kähler contact distributions”, J. of Geometry and Physics, 60 (2010), 1958–1967 | DOI | MR | Zbl
[16] Vershik A. M., Gershkovich V. Ya., “Negolonomnye dinamicheskie sistemy. Geometriya raspredelenii i variatsionnye zadachi”, Itogi nauki i tekhniki. Ser. Sovrem. probl. mat. Fundamentalnye napravleniya, 16, VINITI, 1987, 5–85 | MR | Zbl
[17] Manin Yu. I., Kalibrovochnye polya i kompleksnaya geometriya, Nauka, M., 1984, 336 pp. | MR