Almost contact metric structures defined by connection over distribution with admissible Finslerian metric
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 3, pp. 17-22

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of the intrinsic connection and the extended connection of an almost contact metric manifold $D$ with admissible Finslerian metric is introduced and studied. Using this and the extended connection on $D$ as on the total space of a vector bundle, an almost contact metric structure is defined and investigated.
@article{ISU_2012_12_3_a2,
     author = {A. V. Bukusheva and S. V. Galaev},
     title = {Almost contact metric structures defined by connection over distribution with admissible {Finslerian} metric},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {17--22},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a2/}
}
TY  - JOUR
AU  - A. V. Bukusheva
AU  - S. V. Galaev
TI  - Almost contact metric structures defined by connection over distribution with admissible Finslerian metric
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2012
SP  - 17
EP  - 22
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a2/
LA  - ru
ID  - ISU_2012_12_3_a2
ER  - 
%0 Journal Article
%A A. V. Bukusheva
%A S. V. Galaev
%T Almost contact metric structures defined by connection over distribution with admissible Finslerian metric
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2012
%P 17-22
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a2/
%G ru
%F ISU_2012_12_3_a2
A. V. Bukusheva; S. V. Galaev. Almost contact metric structures defined by connection over distribution with admissible Finslerian metric. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 3, pp. 17-22. http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a2/