Thermomechanical orthogonality in nonlinear type-III thermoelasticity (GNIII)
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 3, pp. 72-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper is devoted to formulations of constitutive equations for the non-linear Green–Naghdi type-III thermoelastic continuum consistent with the principle of thermodynamic (or thermomechanical) orthogonality. The principle of thermodynamic orthogonality proposed by Ziegler as a generalization of the Onsager linear irreversible thermodynamics states that the irreversible constituent parts of thermodynamic currents (velocities) are orthogonal to the convex dissipation potential level surface in the space of thermodynamic forces for any process of heat transport in a solid. The principle of the thermomechanical orthogonality takes its origin from the von Mises maximum principle of the perfect plasticity, where it provides existence of a yield surface, its convexity, and the associated flow rule. Non-linear constitutive laws of heat propagation as of type-III thermoelasticity complying with the principle of thermomechanical orthogonality are discussed. Important for applied thermoelasticity cases covered by type-III theory are studied: GNI/CTE – conventional thermoelasticity based on the Fourier heat conduction law and GNII – dissipationless hyperbolic thermoelasticity. In the latter case the internal entropy production equals zero for any heat transport process having the form of the undamped thermoelastic wave propagating at finite speed.
@article{ISU_2012_12_3_a11,
     author = {V. A. Kovalev and Yu. N. Radayev},
     title = {Thermomechanical orthogonality in nonlinear {type-III} thermoelasticity {(GNIII)}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {72--82},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a11/}
}
TY  - JOUR
AU  - V. A. Kovalev
AU  - Yu. N. Radayev
TI  - Thermomechanical orthogonality in nonlinear type-III thermoelasticity (GNIII)
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2012
SP  - 72
EP  - 82
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a11/
LA  - ru
ID  - ISU_2012_12_3_a11
ER  - 
%0 Journal Article
%A V. A. Kovalev
%A Yu. N. Radayev
%T Thermomechanical orthogonality in nonlinear type-III thermoelasticity (GNIII)
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2012
%P 72-82
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a11/
%G ru
%F ISU_2012_12_3_a11
V. A. Kovalev; Yu. N. Radayev. Thermomechanical orthogonality in nonlinear type-III thermoelasticity (GNIII). Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 3, pp. 72-82. http://geodesic.mathdoc.fr/item/ISU_2012_12_3_a11/

[1] Green A. E., Naghdi P. M., “On undamped heat waves in an elastic solid”, J. Thermal Stresses, 15 (1992), 253–264 | DOI | MR

[2] Green A. E., Naghdi P. M., “Thermoelasticity without energy dissipation”, J. Elasticity, 31 (1993), 189–208 | DOI | MR | Zbl

[3] Ivlev D. D., Teoriya idealnoi plastichnosti, Nauka, M., 1966, 232 pp. | MR | Zbl

[4] Radaev Yu. N., Prostranstvennaya zadacha matematicheskoi teorii plastichnosti, 2-e izd., pererab. i dop., Izd-vo Samar. gos. un-ta, Samara, 2006, 340 pp.

[5] Ziegler H., “Proof of an orthogonality principle in irreversible thermodynamics”, Zeitschrift fur Angewandte Mathematik und Physik (ZAMP), 21:6 (1970), 853–863 | DOI | Zbl

[6] Tsigler G., Ekstremalnye printsipy termodinamiki neobratimykh protsessov i mekhanika sploshnoi sredy, Mir, M., 1966, 134 pp. | MR

[7] Ziegler H., “Discussion of some objections to thermomechanical orthogonality”, Archive of Applied Mechanics, 50:3 (1981), 149–164 | Zbl

[8] Zhermen P., Kurs mekhaniki sploshnykh sred, Vyssh. shk., M., 1983, 399 pp.

[9] Kovalev V. A., Radaev Yu. N., Volnovye zadachi teorii polya i termomekhanika, Izd-vo Sarat. un-ta, Saratov, 2010, 328 pp.