Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2012_12_2_a7, author = {M. M. Buzmakova}, title = {Percolation of spheres in continuum}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {48--56}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a7/} }
M. M. Buzmakova. Percolation of spheres in continuum. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 2, pp. 48-56. http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a7/
[1] Savina L. V., Kristalloskopicheskie struktury syvorotki krovi zdorovogo i bolnogo cheloveka, Sov. Kuban, Krasnodar, 1999, 96 pp.
[2] Shabalin V. N., Shatokhina S. N., Morfologiya biologicheskikh zhidkostei cheloveka, Khrizostom, M., 2001, 304 pp.
[3] Rapis E. G., Belok i zhizn (samoorganizatsiya, samosborka i simmetriya nanostruktur belka), Filobiblon, Ierusalim; Milta-PKP GIT, M., 2002, 257 pp.
[4] Pauchard L., Parisse F., Allain C., “Influence of salt content on crack patterns formed through colloidal suspension desiccation”, Phys. Rev. E, 59:3 (1999), 3737–3740 | DOI
[5] Yakhno T. A., Yakhno V. G., Sanin A. G., Sanina O. A., Pelyushenko A. S., “Belok i sol: prostranstvenno-vremennye sobytiya v vysykhayuschei kaple”, Zhurn. tekhn. fiziki, 74:8 (2004), 100–108
[6] Yakhno T. A., Yakhno V. G., “Osnovy strukturnoi evolyutsii vysykhayuschikh kapel biologicheskikh zhidkostei”, Zhurn. tekhnicheskoi fiziki, 79:8 (2009), 133–141
[7] Stauffer D., Aharony A., Introduction to Percolation Theory, Taylor Francis, L., 1992, 181 pp.
[8] Sahimi M., Application of Percolation Theory, Taylor Francis, L., 1994, 258 pp.
[9] Zaiman D., Modeli besporyadka. Teoreticheskaya fizika odnorodno neuporyadochennykh sistem, Mir, M., 1982, 591 pp.
[10] Feder E., Fraktaly, Mir, M., 1991, 254 pp. | MR
[11] Ohira K., Sato M., Kohmoto M., “Fluctuations in chemical gelation”, Phys. Rev. E, 75:4 (2007), 041402 | DOI
[12] Gado E., Fierro A., Arcangelis L., Coniglio A., “Slow dynamics in gelation phenomena: From chemical gels to colloidal glasses”, Phys. Rev. E, 69:5 (2004), 051103 | DOI
[13] Jespersen S., “Cluster diffusion at the gelation point”, Phys. Rev. E, 66:3 (2002), 031502 | DOI
[14] Vernon D., Plischke M., “Viscoelasticity near the gel point: A molecular dynamics study”, Phys. Rev. E, 64:3 (2001), 031505 | DOI
[15] Plischke M., Vernon D., Joós B., “Model for gelation with explicit solvent effects: Structure and dynamics”, Phys. Rev. E, 67:1 (2003), 011401 | DOI
[16] Monkos K., “Determination of some hydrodynamic parameters of ovine serum albumin solutions using viscometric measurements”, J. of Biological Phys., 31 (2005), 219–232 | DOI
[17] Rottereau M., Gimel J., Nicolai T., Durand D., “3d Monte Carlo simulation of site-bond continuum percolation of spheres”, The European Physical J. E: Soft Matter and Biological Physics, 11 (2003), 61–64 | DOI
[18] Johner N., Grimaldi C., Balberg I., Ryser P., “Transport exponent in a three-dimensional continuum tunneling-percolation model”, Phys. Rev. B, 77:17 (2008), 174204 | DOI
[19] Matsumoto M., “Mersenne twister: A 623-dimensionally equidistributed uniform pseudorandom number generator”, ACM Trans. on Modeling and Computer Simulations, 8:1 (1998), 3–30 | DOI | Zbl
[20] Hoshen J., Kopelman R., “Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm”, Phys. Rev. B, 14:8 (1976), 3438–3445 | DOI
[21] Rubin F., “The Lee Path Connection Algorithm”, IEEE Transactions on Computers, 23 (1974), 907–914 | DOI | MR | Zbl
[22] Teilor D., Vvedenie v teoriyu oshibok, per. s angl., Mir, M., 1985, 272 pp.
[23] Tarasevich Yu. Yu., Perkolyatsiya: teoriya, prilozheniya, algoritmy, Editorial URSS, M., 2002, 112 pp.
[24] Balberg I., Binenbaum N., “Invariant properties of the percolation thresholds in the soft-core-hard-core transition”, Phys. Rev. A, 35:12 (1987), 5174–5177 | DOI
[25] Efros A. L., Fizika i geometriya besporyadka, Nauka, M., 1982, 260 pp. | MR
[26] Zhydkov V., “3D continuum percolation approach and its application to lava-like fuel-containing materials behavior forecast”, Condensed Matter Phys., 12:2 (2009), 193–203 | DOI